
In the illustration at right, a young man
holds a qubit in his hands. His perspective
rests on knowledge accumulated over the last
century in quantum physics, information theory,
and computer science, the fields that gave birth
to the concept of quantum information. He sym-
bolizes the potential of this new resource for
communication and computation, as well as the
curiosity and excitement it has generated among
young men and women. Research on quantum informa-
tion holds the promise of making quantum phenomena
subject to control and manipulation of a new kind. It also
holds the promise of bringing these phenomena into the
classroom, where young people will grow up knowing
the quantum first hand.

Inspiration is derived in many ways. At Los Alamos,
a sense of history and the legacy of the great minds
who were leading participants in the Manhattan
Project are a continuing source. For that reason, this
volume about the Los Alamos effort in quantum
information and quantum science opens with
thought-provoking words from John Wheeler and
Richard Feynman (see pages vi–ix). Both were
Manhattan Project pioneers, and as discussed
below, both have helped launch the field of
quantum information science and renew
interest in the foundations of quantum
theory and measurement. 
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Quantum information processing, Science of—The theoretical, experimental and
technological areas covering the use of quantum mechanics for communication and
computation
—Kluwer Encyclopedia of Mathematics, Supplement II

Research conducted in the last few decades has established that quantum informa-
tion, or information based on quantum mechanics, has capabilities that exceed
those of traditional “classical” information. For example, in communication, quan-

tum information enables quantum cryptography, which is a method for communicating in
secret. Secrecy is guaranteed because eavesdropping attempts necessarily disturb the
exchanged quantum information without revealing the content of the communication. 
In computation, quantum information enables efficient simulation of quantum physics, a
task for which general-purpose, efficient, classical algorithms are not known to exist.
Quantum information also leads to efficient algorithms for factoring large numbers, which
is believed to be difficult for classical computers. An efficient factoring algorithm would
break the security of commonly used public-key cryptographic codes used for authenticat-
ing and securing Internet communications. Yet another application of quantum informa-
tion improves the efficiency with which unstructured search problems can be solved.
Quantum unstructured search may make it possible to solve significantly larger instances
of optimization problems, such as the scheduling and traveling salesman problems. 

Because of the capabilities of quantum information, the science of quantum informa-
tion processing is now a prospering, interdisciplinary field focused on better understand-
ing the possibilities and limitations of the underlying theory, on developing new
applications of quantum information, and on physically realizing controllable quantum
devices. The purpose of this primer is to provide an elementary introduction to quantum
information processing (see Part II), and then to briefly explain how we hope to exploit
the advantages of quantum information (see Part III). These two sections can be read
independently. For reference, we have included a glossary of the main terms of quantum
information (see page 33).

When we use the word “information,” we generally think of the things we can talk
about, broadcast, write down, or otherwise record. Such records can exist in many
forms, such as sound waves, electrical signals in a telephone wire, characters on paper,
pit patterns on an optical disk, or magnetization on a computer hard disk. A crucial
property of information is that it is fungible: It can be represented in many different
physical forms and easily converted from one form to another without changing its
meaning. In this sense, information is independent of the devices used to represent it but
requires at least one physical representation in order to be useful. 

We call the familiar information stored in today’s computers classical or deterministic
to distinguish it from quantum information. It is no accident that classical information is
the basis of all human knowledge. Any information passing through our senses is best
modeled by classical discrete or continuous information. Therefore, when considering 
any other kind of information, we need to provide a method for extracting classically
meaningful information. We begin by recalling the basic ideas of classical information in
a way that illustrates the general procedure for building an information-processing theory. 
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Part I: Classical Information

The basic unit of classical deterministic information is the bit, an abstract entity or
system that can be in one of the two states symbolized by � and �. At this point, the
symbols for the two states have no numeric meaning. That is why we have used a font
different from that for the numbers 0 and 1. By making a clear distinction between the
bit and its states, we emphasize that a bit should be physically realized as a system or
device whose states correspond to the ideal bit’s states. For example, if you are reading
this primer on paper, the system used to realize a bit is a reserved location on the sur-
face, and the state depends on the pattern of ink (� or �) in that location. In a computer,
the device realizing a bit can be a combination of transistors and other integrated-circuit
elements with the state of the bit determined by the distribution of charge. 

In order to make use of information, it must be possible to manipulate (or process)
the states of information units. The elementary operations that can be used for this pur-
pose are called gates. Two one-bit gates are the not and reset gates. Applying the not
gate to a bit has the effect of flipping the state of the bit. For example, if the initial state
of the bit is �, then the state after applying not is not (�) = �. We can present the effect
of the gate in the following form:

Initial State Final State

� → not (�) = �  , and 

� → not (�) = �  . (1)

The reset gate sets the state to � regardless of the input:

Initial State Final State

� → reset (�) = � , and 

� → reset (�) = �  . (2)

By applying a combination of not and reset gates, one can transform the state of a 
bit in every possible way. 

Information units can be combined to represent more information. Bits are 
typically combined into sequences. The states of such a sequence are symbolized by
strings of state symbols for the constituent bits. For example, a two-bit sequence can
be in one of the following four states: ��, ��, ��, and ��. The different bits are distin-
guished by their position in the sequence. 

The one-bit gates can be applied to any bit in a sequence. For example, the not
gate applied to the second bit of a three-bit sequence in the state ��� changes the 
state to ���. 

One-bit gates act independently on each bit. To compute with multiple bits, we
need gates whose action can correlate the states of two or more bits. One such gate is
the nand (“not and”) gate, which acts on two bits in a bit sequence. Its effect is to set
the state of the first bit to � if both the first and the second bit are �; otherwise, it sets
it to �. Here is what happens when nand is applied to two consecutive bits:
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Initial State Final State

�� → nand (��) = �� ,

�� → nand (��) = �� ,

�� → nand (��) = �� , and

�� → nand (��) = �� . (3)

The nand gate can be applied to any two bits in a sequence. For example, it can be
applied to the fourth and second bits (in this order) of four bits, in which case the
initial state ���� is transformed to ����, setting the fourth bit to �. 

Other operations on bit sequences include adding a new bit to the beginning
(prepend) or end (append) of a sequence. The new bit is always initialized to �� It is
also possible to discard the first or last bit regardless of its state. Versions of these
operations that are conditional on the state of another bit may also be used. An 
example is the conditional append operation: “If the kth bit is in the state �, then
append a bit.”

The gates just introduced suffice for implementing arbitrary state transformations
of a given bit sequence. Instructions for applying gates in a particular order are
called a circuit. An important part of investigations in information processing is to
determine the minimum resources required to perform information-processing tasks.
For a given circuit, the two primary resources are the number of gates and the total
number of bits used. The circuit complexity of a desired transformation is the mini-
mum number of gates needed to implement it. 

The model of computation defined by the ability to apply gates in a fixed
sequence is called the circuit model. Classical computation extends the circuit 
model by providing a means for repeating blocks of instructions indefinitely or until
a desired condition is achieved. In principle, it is possible to conceive of a general-
purpose computer as a device that repeatedly applies the same circuit to the 
beginnings of several bit sequences. In this article, we take for granted a traditional
programmable computer based on classical information. Thus, a quantum algorithm
is a program written for such a computer with additional instructions for applying
gates to quantum information. The computational power of this model is equivalent
to that of other general-purpose models of quantum computation, such as quantum
Turing machines (Yao 1993). 

For an introduction to algorithms and their analysis, refer to Thomas Cormen et
al. (1990). Christos Papadimitriou wrote (1994) a useful textbook on computational
complexity with an introduction to classical computation and computational
machine models.
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Part II: Quantum Information

The foundations of an information-processing theory can be constructed by the pro-
cedure we followed in the previous section:

1. Define the basic unit of information.
2. Give the means for processing one unit.
3. Describe how multiple units can be combined.
4. Give the means for processing multiple units.
5. Show how to convert the content of any of the extant units to classical information.

Note that the last step was not required for classical information processing.
In this section, we follow the general procedure for defining an information-processing

theory to introduce quantum information processing. A simple example that exhibits the
advantages of quantum information is given in the section “The Parity Problem” on page
21. A version of the quantum factoring algorithm is described immediately following this
article in “From Factoring to Phase Estimation” on page 38.

The Quantum Bit

The fundamental resource and basic unit of quantum information is the quantum bit
(qubit), which behaves like a classical bit enhanced by the superposition principle (see
discussion in this section). From a physical point of view, a qubit is represented by an
ideal two-state quantum system. Examples of such systems include photons (vertical and
horizontal polarization), electrons and other spin-1/2 systems (spin-up and -down), and
systems defined by two energy levels of atoms or ions. From the beginning, the two-
state system played a central role in studies of quantum mechanics. It is the simplest
quantum system, and in principle, all other quantum systems can be modeled in the state
space of collections of qubits. 

From the information-processing point of view, a qubit’s state space contains the two
“logical,” or computational, states |�〉 and |�〉. The so-called “ket” notation for these
states was introduced by Paul Dirac, and its variations are widely used in quantum
physics. One can think of the pair of symbols | and 〉 as representing the qubit system.
Their content specifies a state for the system. In this context, � and � are system-
independent state labels. When, say, � is placed within the ket, the resulting expression
|�〉 represents the corresponding state of a specific qubit. 

The initial state of a qubit is always one of the logical states. Using operations to be
introduced later, we can obtain states that are superpositions of the logical states.
Superpositions can be expressed as sums α|�〉 + β|�〉 over the logical states with com-
plex coefficients. The complex numbers α and β are the amplitudes of the superposition.
The existence of such superpositions of distinguishable states of quantum systems is one
of the basic tenets of quantum theory and is called the superposition principle. Another
way of writing a general superposition is as a vector:

(4)

where the two-sided arrow is used to denote the correspondence between expressions
that mean the same thing. 

The qubit states that are superpositions of the logical states are called pure states:
A superposition α|�〉 + β|�〉 is a pure state if the corresponding vector has length 1, that

α β
α
β

� �+ ↔






 ,
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is, |α |2 + |β |2 = 1. Such a superposition or vector is said to be normalized. (For a com-
plex number given by γ = x + iy, one can evaluate |γ |2 = x2 + y2. Here, x and y are the
real and imaginary part of γ , and the symbol i is a square root of –1, that is, i2 = –1. The
conjugate of γ is γ = x – iy. Thus, | γ |2 = γγ). Here are a few examples of states given in
both the ket and vector notation:

(5)

(6)and

(7)   

The state |ψ3〉 is obtained from |ψ2〉 by multiplication with i. It turns out that two
states cannot be distinguished if one of them is obtained by multiplying the other by a
phase eiθ. Note how we have generalized the ket notation by introducing expressions
such as |ψ〉 for arbitrary states. 

The superposition principle for quantum information means that we can have states
that are sums of logical states with complex coefficients. There is another, more familiar
type of information, whose states are combinations of logical states. The basic unit of
this type of information is the probabilistic bit (pbit). Intuitively, a pbit can be thought of
as representing the as-yet-undetermined outcome of a coin flip. Since we need the idea
of probability to understand how quantum information converts to classical information,
we briefly introduce pbits. 

A pbit’s state space is a probability distribution over the states of a bit. One very
explicit way to symbolize such a state is by using the expression {p:�, (1 – p):�}, which
means that the pbit has probability p of being � and 1 – p of being �. Thus, a state of a
pbit is a probabilistic combination of the two logical states, where the coefficients are
nonnegative real numbers summing to 1. A typical example is the unbiased coin in the
process of being flipped. If tail and head represent � and �, respectively, the coin’s state
is {1/2:�, 1/2:�}. After the outcome of the flip is known, the state collapses to one of the
logical states � and �. In this way, a pbit is converted to a classical bit. If the pbit is
probabilistically correlated with other pbits, the collapse associated with learning the
pbit’s logical state changes the overall probability distribution by a process called 
conditioning on the outcome. 

A consequence of the conditioning process is that we never actually “see” a 
probability distribution. We only see classical deterministic bit states. According to the
frequency interpretation of probabilities, the original probability distribution can only 
be inferred after one looks at many independent pbits in the same state {p:�, (1 – p):�}:
In the limit of infinitely many pbits, p is given by the fraction of pbits seen to be in the
state o. As we will explain, we can never see a general qubit state either. For qubits,
there is a process analogous to conditioning. It is called measurement and converts qubit
states to classical information. 

Information processing with pbits has many advantages over deterministic information
processing with bits. One advantage is that algorithms are often much easier to design and

ψ3
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analyze if they are probabilistic. Examples include many optimization and physics simu-
lation algorithms. In some cases, the best available probabilistic algorithm is more effi-
cient than any known deterministic algorithm. An example is an algorithm for determin-
ing whether a number is prime or not. It is not known whether every probabilistic algo-
rithm can be derandomized efficiently. There are important communication problems
that can be solved probabilistically but not deterministically. For a survey of these algo-
rithms, see Rajiv Gupta (1994a). 

What is the difference between bits, pbits, and qubits? One way to visualize the 
difference and see the enrichment provided by pbits and qubits is shown in Figure 1. 

Figure 1. Comparing State Spaces of Different Information Units
The states of a bit correspond to two points. The states of a pbit can be thought of as convex
combinations of a bit’s states and therefore can be visualized as lying on the line connecting
the two bit states. A qubit’s pure states correspond to the surface of the unit sphere in three
dimensions, where the logical states correspond to the poles. This representation of qubit
states is called the Bloch sphere. The explicit correspondence is discussed at the end of the
section “Mixtures and Density Operators.” Also refer to the definition and use of the Bloch
sphere in the article “NMR and Quantum Information Processing” on page 226. There, the cor-
respondence between the pure states and the sphere is physically motivated and comes
from a way of viewing a spin-1/2 system as a small quantum magnet. Intuitively, a state is
determined by the direction of the north pole of the magnet.

Processing One Qubit

The quantum version of the not gate for bits exchanges the two logical states; that is,
using ket notation,

not(α|�〉+ β|�〉) = α|�〉 + β|�〉 = β|�〉 + α|�〉 . (8)

In vector notation, this equation becomes
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Pbit Qubit

|�〉

11

State: � or � {p:�, (1 – p):�} α|�〉 + β|�〉
|α|2 + |β|2 = 1

Bit

00

|�〉



(9)

Another way of expressing the effect of not is by multiplying the vector by a matrix rep-
resenting not,

(10)

so that we can identify the action of not with the matrix

An even simpler gate is the one that does nothing. We call it the noop gate, and its
matrix form is the identity matrix, as shown in the following equation:

(11)

The noop and not gates are reversible. In other words, we can undo their actions by
applying other gates. For example, the action of the not gate can be undone by another 
not gate. The action of every reversible quantum gate can be represented by matrix multi-
plication, where the matrix has the additional property of preserving vector lengths. Such
matrices are called unitary and are characterized by the equation A†A = 11, where A† is 
the conjugate transpose of A and 11 is the identity matrix. (The conjugate transpose of a
matrix is computed by flipping that matrix across the main diagonal and conjugating 
the complex numbers). For gates represented by a matrices, the unitarity condition is 
necessary and sufficient for ensuring that pure states get mapped to pure states. 

Because qubit states can be represented as points on a sphere, reversible one-qubit gates
can be thought of as rotations of the Bloch sphere. This is why such quantum gates are
often called rotations. As explained in detail on page 232 in the article “NMR and
Quantum Information Processing”, rotations around the x-, y-, and z-axis are in a sense
generated by the three Pauli matrices

(12)

each of which represents a one-qubit gate. For example, a rotation around the x-axis by
an angle φ is given by e–iσxφ/2 = cos(φ/2)11 – i sin(φ/2)σx. To obtain this identity, one can
use the power series for eA, eA = ∑

k=0

∞
(1/k!)Ak, and exploit the fact that σ2

x = 11 to simplify

the expression. Here are some gates that can be defined with the help of rotations:

σ σ σx y z
i
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90° x-rotation:

90° y-rotation:

φ z-rotation:

Hadamard gate: (13)

The rotation gates often show up in controlling spins or ions with radio-frequency pulses
or lasers. The Hadamard gate is used primarily by quantum programmers. It can be
expressed as a product of a 90° y-rotation and σz. 

To check directly that the rotation gates are reversible, one can determine their
inverses. In this case and as expected, the inverse of a rotation is the rotation around the
same axis in the opposite direction. For example, the inverses of the roty90° and rotzφ
gates are given by

(14)

Another useful property of the rotation gates is that the angles add when rotations are
applied around the same axis. For example, rotzφrotzθ = rotzφ+θ .

The Bra-Ket Notation for Logic Gates. The ket notation can be extended so that we
can write gates in a compact form that readily generalizes to multiple qubits. To do so,
we have to introduce expressions such as 〈ψ| = α〈�| + β〈�|. This is called the “bra”
notation. The terminology comes from the term “bracket:” The bra is the left, and the
ket is the right part of a matched pair of brackets. From the vector point of view, 〈ψ|
corresponds to the row vector (α, β). Note that a column vector multiplied by a row vec-
tor yields a matrix. In the bra-ket notation, this corresponds to multiplying a ket |ψ〉 by a
bra 〈φ|, written as |ψ〉〈φ|. Since this represents an operator on states, we expect to be able
to compute the effect of |ψ〉〈φ| on a state |ϕ〉 by forming the product. To be able to evalu-
ate such products with one-qubit bras and kets, we need the following two rules: distrib-
utivity and inner-product evaluation.

Distributivity
You can rewrite sums and products using distributivity. For example,

(15)

Observe that we can combine the amplitudes of terms, but we cannot rearrange the order
of the bras and kets in a product. 
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Inner-Product Evaluation
The product of a logical bra and a logical ket is evaluated according to the identities

(16)

It follows that for logical states, if a bra multiplies a ket, the result cancels unless the
states match, in which case the answer is 1. Applying inner-product evaluation to
Equation (15) results in 

(17)

To simplify the notation, we can omit one of the two vertical bars in products such as
〈a||b〉 and write 〈a|b〉. 

To understand inner-product evaluation, think of the expressions as products of row
and column vectors. For example,

〈�|�〉 ↔
(1  0)

(18)

That is, as vectors, the two states |�〉 and |�〉 are orthogonal. In general, if |φ〉 and 
|ψ〉 are states, then 〈φ|ψ〉 is the inner product, or “overlap,” of the two states. In the
expression for the overlap, we compute 〈φ| from |φ〉 = α|�〉 + β|�〉 by conjugating 
the coefficients and converting the logical kets to bras: 〈φ| = α〈�| + β〈�|. In the vector
representation, this is the conjugate transpose of the column vector for |φ〉, so the inner
product agrees with the usual one. Two states are orthogonal if their overlap is zero. 
We write |φ〉† = 〈φ| and 〈φ|† = |φ〉. 

Every linear operator on states can be expressed with the bra-ket notation. For exam-
ple, the bra-ket expression for the noop gate is noop = |�〉〈�| + |�〉〈�|. To apply noop to
a qubit, you multiply its state on the left by the bra-ket expression 

(19)

One way to think about an operator such as |a〉〈b| is to notice that, when it is used to
operate on a ket expression, the 〈b| picks out the matching kets in the state, which are
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then changed to |a〉. For example, we can write the not operation as not = |�〉〈�| + |�〉〈�|.
The coefficients of the |a〉〈b| in a bra-ket representation of a gate correspond to

matrix entries in the matrix representation. The relationship is defined by

(20)

Two Quantum Bits

Some states of two quantum bits can be symbolized by the juxtaposition (or multipli-
cation) of the states of each quantum bit. In particular, the four logical states |�〉|�〉,
|�〉|�〉, |�〉|�〉, and |�〉|�〉 are acceptable pure states for two quantum bits. In these expres-
sions, we have distinguished the qubits by position (first or second). It is easier to
manipulate state expressions if we explicitly name the qubits, say, A and B. We can then
distinguish the kets by writing, for example, |ψ〉A for a state of qubit A. Now, the state
|�〉|�〉 can be written with explicit qubit names (or labels) as

|�〉A |�〉B = |�〉B |�〉A = |��〉AB = |��〉BA . (21)

Having explicit labels allows us to unambiguously reorder the states in a product of
states belonging to different qubits. We say that kets for different qubits “commute.”

So far, we have seen four states of two qubits, which are the logical states that corre-
spond to the states of two bits. As in the case of one qubit, we can use the superposition
principle to get all the other pure states. Each state of two qubits is therefore of the form

α|��〉AB + β|��〉AB + γ|��〉AB + δ|��〉AB , (22)

where α, β, γ, and δ are complex numbers. Again, there is a column vector form for the
state,

(23)

and this vector has to be of unit length, that is, |α|2 + |β|2 + |γ|2 + |δ|2 = 1. When using
the vector form for qubit states, one has to be careful about the convention used for
ordering the coefficients. 

Other examples of two-qubit states in ket notation are the following:

α
β
γ
δ
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(24)

The first two of these states have the special property that they can be written as a product
|φ1〉A|φ2〉B of a state of qubit A and a state of qubit B. The second expression for |ψ2〉 shows
that the product decomposition is not always easy to see. Such states are called product
states. The last two states, |ψ3〉AB and |ψ4〉AB, are two of the famous Bell states. They have
no such representation as a product of independent states of each qubit. They are said to be
entangled because they contain a uniquely quantum correlation between the two qubit 
systems. Pbits can also have correlations that cannot be decomposed into product states,
but the entangled states have additional properties that make them very useful. For example,
if Alice and Bob each have one of the qubits that together are in the state |ψ�〉AB, they can
use them to create a secret bit for encrypting their digital communications (see the article
“Quantum State Entanglement” on page 52). 

Processing Two Qubits

The simplest way of modifying the state of two qubits is to apply one of the
one-qubit gates. If the gates are expressed in the bra-ket notation, all we need to do is
add qubit labels so that we know which qubit each bra or ket belongs to. For example,
the not gate for qubit B is written as

not(B) = |�〉B
B〈�| + |�〉B

B〈�| . (25)

The labels for bra expressions occur as left superscripts. To apply expressions like this
to states, we need one more rule, namely, commutation. 

Commutation 
Kets and bras with different labels can be interchanged in products (they commute).

This property is demonstrated by the following example:

(26)
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Note that we cannot merge the two vertical bars in expressions such as B〈�||�〉A because
the two terms belong to different qubits. The bars can only be merged when the expres-
sion is an inner product, which requires that the two terms belong to the same qubit. 

With the rules for bra-ket expressions in hand, we can apply the not gate to one of
our Bell states to see how it acts:

(27)

The effect of the gate was to flip the state symbols for qubit B, which results in another
Bell state. 

The gate not(B) can also be written as a 4 × 4 matrix acting on the vector representa-
tion of a two-qubit state. However, the relationship between this matrix and the
one-qubit matrix is not as obvious as for the bra-ket expression. The matrix is

(28)

which swaps the top two and bottom two entries of a state vector. 
One way to see the relationship between the one- and two-qubit representations of

the gate not(B) is to notice that because the noop gate acts as the identity and because
we can act on different qubits independently, noop(A)not(B) ≅ not(B). The matrix for
not(B) can be expressed as a Kronecker product (⊗) of the matrices for noop and not:

not( )  ,B =



















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
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(29)

The Kronecker product of two matrices expands the first matrix by multiplying each
entry by the second matrix. A disadvantage of the matrix representation of quantum
gates is that it depends on the number and order of the qubits. However, it is often easier
to visualize what the operation does by writing down the corresponding matrix. 

One cannot do much with one-bit classical gates. Similarly, the utility of one-qubit
gates is limited. In particular, it is not possible to obtain a Bell state starting from
|��〉AB or any other product state. We therefore need to introduce at least one two-qubit
gate not expressible as the product of two one-qubit gates. The best-known such gate is
the controlled-not (cnot) gate. Its action can be described by the statement, “if the first
bit is �, flip the second bit; otherwise, do nothing.” The bra-ket and matrix representa-
tions for this action are

(30)

The cnot gate is reversible because its action is undone if a second cnot is applied.
This outcome is easy to see by computing the square of the matrix for cnot, which
yields the identity matrix. As an exercise in manipulating bras and kets, let us calculate
the product of two cnot gates by using the bra-ket representation:

(31)
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The first step is to expand this expression by multiplying out. Expressions such as
|�〉A

A〈�||�〉A
A〈�| cancel because of the inner-product evaluation rule A〈�|�〉A = 0. One can

also reorder bras and kets with different labels and rewrite |�〉A
A〈�||�〉A

A〈�| = |�〉A
A〈�|

to get 

(32)

Here we used the fact that, when the bra-ket expression for noop is applied to the ket
expression for a state, it acts the same as (here denoted by the symbol ≅) multiplication
by the number 1. 

Using Many Quantum Bits

To use more than two, say, five qubits, we can just start with the state
|�〉A|�〉B|�〉C|�〉D|�〉E and apply gates to any one or two of these qubits. For example,
cnot(DB) applies the cnot operation from qubit D to qubit B. Note that the order of D
and B in the label for the cnot operation matters. In the bra-ket notation, we simply
multiply the state with the bra-ket form of cnot(DB) from the left. One can express
everything in terms of matrices and vectors, but now the vectors have length 25 = 32,
and the Kronecker product expression for cnot(DB) requires some reordering to enable
inserting the operation so as to act on the intended qubits. Nevertheless, to analyze the
properties of all reversible (that is, unitary) operations on these qubits, it is helpful to
think of the matrices because a lot of useful properties about unitary matrices are
known. One important result from this analysis is that every matrix that represents a
reversible operation on quantum states can be expressed as a product of the one- and
two-qubit gates introduced so far. We say that this set of gates is universal. 

For general-purpose computation, it is necessary to have access to arbitrarily many
qubits. Instead of assuming that there are infinitely many from the start, it is convenient
to have an operation to add a new qubit, namely, add. To add a new qubit labeled X in
the state |�〉X, apply add(X) to the current state. This operation can only be used if there
is not already a qubit labeled X. To implement the add(X) operation in the bra-ket nota-
tion, we multiply the ket expression for the current state by |�〉X.
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Qubit Measurements

In order to classically access information about the state of qubits, we use the meas-
urement operation meas. This is an intrinsically probabilistic process that can be applied
to any extant qubit. For information processing, one can think of meas as a subroutine
or function whose output is either � or �. The output is called the measurement 
outcome. The probabilities of the measurement outcomes are determined by the 
current state. The state of the qubit being measured is collapsed to the logical state 
corresponding to the outcome. Suppose we have just one qubit, currently in the state 
|ψ〉 = α|�〉 + β|�〉. Measurement of this qubit has the effect

(33)

The classical output is given before the new state for each possible outcome. This 
measurement behavior explains why the amplitudes have to define unit length vectors:
Up to a phase, they are associated with square roots of probabilities. 

For two qubits, the process is more involved. Because of possible correlations
between the two qubits, the measurement affects the state of the other one too, similar 
to conditioning for pbits after one “looks” at one of them. As an example, consider 
the state

(34)

To figure out what happens when we measure qubit A, we first rewrite the current state
in the form α|�〉A|φ0〉B + β|�〉A|φ1〉B, where |φ0〉B and |φ1〉B are pure states for qubit B. It
is always possible to do that. For the example given in Equation (34),
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The last step required pulling out the factor of √5/3 to make sure that |φ0〉B is properly
normalized for a pure state. Now, that we have rewritten the state, the effect of measur-
ing qubit A can be given as follows:

(36)

For the example, the measurement outcome is � with probability 5/9, in which case the
state collapses to |�〉A(1/√5|�〉B + 2/√5|�〉B). The outcome is � with probability 4/9, in
which case the state collapses to |�〉A|�〉B. The probabilities add up to 1 as they should. 

The same procedure works for figuring out the effect of measuring one of any num-
ber of qubits. Say we want to measure qubit B among qubits A, B, C, D, currently in
state |ψ〉ABCD. First, rewrite the state in the form α|�〉B|φ0〉ACD + β|�〉B|φ1〉ACD, making
sure that the ACD superpositions are pure states. Then, the outcome of the measurement
is � with probability |α|2 and � with probability |β|2. The collapsed states are
|�〉B|φ0〉ACD and |�〉B|φ1〉ACD, respectively. 

Probabilities of the measurement outcomes and the new states can be calculated sys-
tematically. For example, to compute the probability and state for outcome � of 
meas(A) given the state |ψ〉AB, one can first obtain the unnormalized ket expression
|φ′0〉B = A〈�||ψ〉AB by using the rules for multiplying kets by bras. The probability is
given by p0 = B〈φ′0|φ′0〉B, and the collapsed, properly normalized pure state is

(37)

The operator P� = |�〉A
A〈�| is called a projection operator or projector for short. If we

perform the same computation for the outcome �, we find the projector P� = |�〉A
A〈�|.

The two operators satisfy Pa
2 = Pa, P†

a = Pa, and P� + P� = 11. In terms of the projec-
tors, the measurement’s effect can be written as follows:

(38)

where p0 = AB〈ψ|P�|ψ〉AB and p1 = AB〈ψ|P�|ψ〉AB. In quantum mechanics, any pair of
projectors satisfying the properties given above is associated with a potential measure-
ment whose effect can be written in the same form. This is called a binary von
Neumann, or projective, measurement. 
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Mixtures and Density Operators

The measurement operation reads out information from qubits to pbits. What if we
discard the pbit that contains the measurement outcome? The result is that the qubits are
in a probabilistic mixture of two pure states. Such mixtures are a generalization of pure
states. The obvious way to think about a mixture is that we have a probability distribu-
tion over pure quantum states. For example, after discarding the pbit and qubit A in
Equation (36), we can write the state of B as ρ = {|α|2:|φ0〉B, |β|2:|φ1〉B}, using the nota-
tion for probability distributions introduced earlier. 

Mixtures frequently form when irreversible operations are used, such as measure-
ment. Except for measurement, the quantum gates we have introduced so far are
reversible and therefore transform pure states to pure states so that no mixtures can be
formed. One of the fundamental results of reversible classical and quantum computation
is that there is no loss in power in using only reversible gates. Specifically, it is possible
to change a computation that includes irreversible operations to one that accomplishes
the same goal, has only reversible operations, and is efficient in the sense that it uses at
most polynomial additional resources. However, the cost of using only reversible opera-
tions is not negligible. In particular, for ease of programming and, more important, when
performing repetitive error-correction tasks (see the article on this subject on page 188),
the inability to discard or reset qubits can be very inconvenient. We therefore introduce
additional operations that enable resetting and discarding. 

Although resetting has a so-called thermodynamic cost (think of the heat generated
by a computer), it is actually a simple operation. The reset operation applied to qubit A
can be thought of as the result of first measuring A, then flipping A if the measurement
outcome is |�〉, and finally discarding the measurement result. Using the notation of
Equation (36), the effect on a pure state |ψ〉AB is given by

(39)

To apply reset to an arbitrary probability distribution, you apply it to each of that distri-
bution’s pure states and combine the results to form an expanded probability distribution.
The discard(A) operation is reset(A) followed by discarding qubit A. In the expression for
the state after reset(A), therefore, all the |�〉A are removed. It is an important fact that every
physically realizable quantum operation, whether reversible or not, can be expressed as a
combination of add operations, gates from the universal set, and discard operations. 

The representation of mixtures using probability distributions over pure states is
redundant. That is, many probability distributions are physically indistinguishable. A
nonredundant description of a quantum state can be obtained if density operators are
used. The density operator for the mixture ρ in Equation (39) is given by

(40)

The general rule for calculating the density operator from a probability distribution is
the following: For each pure state |φ〉 in the distribution, calculate the operators |φ〉〈φ|
and sum them weighted by their probabilities. 

ˆ  .ρ α φ φ β φ φ= +2
0

2
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There is a way to apply gates to the density operators defined by states. If the gate
acts by the unitary operator U, then the effect of applying it to  ρ̂ is given by U ρ̂U†

where U† is the conjugate transpose of U. (In the bra-ket expression for U, U† is
obtained by replacing all complex numbers by their conjugates, and terms such as |φ〉〈ϕ|,
by |ϕ〉〈φ|.) 

The relationship between a qubit’s state space and a sphere can be explained in terms
of the qubit’s density operators. In matrix form, this operator is a 2 × 2 matrix, which
can be written uniquely as a sum (11 + xσx + yσy + zσz)/2. One can check that, if the
density operator |ψ〉〈ψ| for a qubit’s pure state is written as such a sum,

|ψ〉〈ψ| = (11 + xσx + yσy + zσz)/2 , (41)

then the vector (x, y, z) thus obtained is on the surface of the unit sphere in three dimen-
sions. In fact, for every vector (x, y, z) on the unit sphere, there is a unique pure state
satisfying Equation (41). Since the density operators for mixtures are arbitrary, convex
(that is, probabilistic) sums of pure states, the set of (x, y, z) thus obtained for mixtures
fills out the unit ball. The rotations introduced earlier modify the vector (x, y, z) in the
expected way, by rotation of the vector around the appropriate axis. See 
 page 232 for more details. 

Quantum Computation

The model of computation defined by the one- and two-qubit gates and the opera-
tions add, meas, and discard qubits is called the quantum network model. A sequence
of instructions for applying these operations is called a quantum network. Quantum
computation extends the network model by providing a means for repeating blocks of
instructions. Such means can be specified by a formal machine model of computation.
There are several such models of classical and quantum computers. One of the best
known is the Turing machine, which has a quantum analogue, the quantum Turing
machine. This model has its uses for formal studies of computation and complexity 
but is difficult to program. Fortunately, as mentioned in Part I, there is no loss of com-
putational power if the means for repeating instructions is provided by a classical com-
puter that can apply gates and other operations to qubits. A general quantum algorithm
is a program written for such a computer. 

There are three practical methods that can be used to write quantum networks and
algorithms. The first is to use the names for the different operations and algebraically
multiply them. The second is to draw quantum networks, which are pictorial representa-
tions of the sequence of steps in time, somewhat like flowcharts without loops. The third
is to use a generic programming language enhanced with statements for accessing and
modifying quantum bits. The first two methods work well as long as the sequence is
short and we do not use many operations that depend on measurement outcomes or
require loops. They are often used to describe subroutines of longer algorithms presented
either in words or by use of the third method. 

To see how to use the different methods and also to illustrate the power of quantum
computation, we work out a short quantum algorithm that solves the so-called parity
problem. 
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The Parity Problem. Given is a “black-box” quantum operation BB(ABC) that has
the following effect when applied to a logical basis state:

BB(ABC)|aAaB〉AB|aC〉C = |aAaB〉ΑΒ|aC ⊕ (bAaA ⊕ bBaB)〉C  , (42)

where bA and bB are 0 or 1. The actual values of bA and bB are unknown. The problem
is to determine what bA and bB are by using the black box only once. 

The terminology and definition of the operation BB(ABC) require explanation. In
computation, we say that an operation is a black box, or an “oracle,” if we have no
access whatsoever to how the operation is implemented. In a black-box problem, we are
promised that the black box implements an operation from a specified set of operations.
In the case of the parity problem, we know that the operation is to add one of four possi-
ble parities (see below). The problem is to determine that parity by using the black box
in a network. Black-box problems serve many purposes. One is to study the differences
between models of computation, just as we are about to do. In fact, black-box problems
played a crucial role in the development of quantum algorithms by providing the first
and most convincing examples of the power of quantum computers (Bernstein and
Vazirani 1993, Simon 1994). Some of these examples involve generalizations of the par-
ity problem. Another purpose of black-box problems is to enable us to focus on what
can be learned from the input/output behavior of an operation without having to analyze
its implementation. Focusing on the input/output behavior is useful because, in many
cases of interest, it is difficult to exploit knowledge of the implementation in order to
determine a desirable property of the operation. A classical example is the well-known
satisfiability problem, in which we are given a classical circuit with one output bit and
we need to determine whether there is an input for which the output is �. Instead of try-
ing to analyze the circuit, one can look for and use a general-purpose black-box search
algorithm to find the satisfying input. 

In the definition of the effect of BB(ABC), the operation ⊕ is addition modulo 2, so 
1 ⊕ 1 = 0, and all the other sums are as expected. As the state symbols have a numeric
meaning now, we will use the number font for states. To see what BB does, suppose that
bA and bB are both 1. Then BB adds (modulo 2) the parity of the logical state in AB to
the logical state of C. The parity of a logical state is 0 if the number of ls is even and 1
if it is odd. The action of BB for this example is given by

(43)
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The action of the black box is extended to superpositions by linear extension. This
means that to apply BB to a superposition of the logical states, we simply apply it to
each logical summand and add the results. Different values of bA and bB correspond to
different parities. For example, if bA = 1 and bB = 0, then the parity of the state in A is
added to the state in C. In this sense, what is added is the parity of a subset of the two
qubits AB. Thus, one way of thinking about the problem is that we wish to find out
which subset’s parity the black box is using. 

We can give an algorithm that solves the parity problem using each of the three meth-
ods for describing quantum networks. Here is an algebraic description of a solution,
qparity(ABC), given as a product of quantum gates that involves one use of the black
box. We defer the explanation of why this solution works until after we show how to
represent the algorithm pictorially, using quantum networks. 

(44)

The output of the algorithm is given by the classical outputs of the measurements of
qubit A, which yield bA, and of qubit B, which yield bB. As is conventional, in writing
products of linear operators, the order of application in Equation (44) is right to left, as
in a product of matrices applied to a column vector. This order of terms in a product is,
however, counterintuitive, particularly for operations to be performed sequentially. It is
therefore convenient to use left to right notation, as is done in describing laser or radio-
frequency pulse sequences, and to put dots between gates to indicate left to right order:

(45)

In this representation, the first operation is add(A), the second is H(A) (the Hadamard
gate on qubit A), and so on.

The algebraic specification of the algorithm as products of gates does not make it
easy to see why the algorithm works. It is also difficult to see which operations depend
on each other. Such dependencies are used to determine whether the operations can be
parallelized. Quantum networks make these tasks simpler. The quantum network for the
above sequence is shown in Figure 2. 

To understand how the quantum network illustrated in Figure 2 solves the parity
problem, we can follow the states as the network is executed from left to right, using the
indicated checkpoints. Using vector notation for the states, at checkpoint 1, the state is

(46)

where we used Kronecker product notation to denote the states of A, B, and C in this
order. In the next time step, the network involves applying Hadamard gates—see
Equation (13)—to A and B and a not gate—see Equation (9)—to C. At checkpoint 2,
this operation results in the state
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Next, a Hadamard gate is applied to C, so that at checkpoint 3, we have 

(48)

The next event involves applying the black box. To understand what happens, note that
the effect of the black box can be described as, “apply not to C if the parity according to
bA and bB of the logical state of AB is 1.” The current state of C is such that, if not is
applied, only the sign changes:

(49)

Now, AB is in a superposition of each of the logical states, and conditional on the logi-
cal state and the (hidden) parity, the sign changes. As a result, although the state of C
does not change, a phase is “kicked back” to AB. A generalization of this effect is at the
heart of Alexei Kitaev’s version of Peter Shor’s quantum factoring algorithm (see the
article “From Factoring to Phase Estimation” on page 38). At the next checkpoint, and
after some arithmetic to check which logical states change sign, we can write the state
as 

(50)

Notice that qubits A and B are in orthogonal states for different values of bA and bB. It
suffices to apply the Hadamard transform again to A and B to get 
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Figure 2. Quantum
Network for Solving the
Parity Problem 
A quantum network has a line
(horizontal in this case) for
each qubit. The line can be
thought of as the timeline for
the qubit and is shown in
blue. Each gate is drawn as a
box, circle, or other element
intercepting the lines of the
qubits it acts on. In this case,
time runs from left to right.
Each qubit’s timeline starts 
at the point where it is added.
In this example, the qubits’
timelines end when they are
measured, at which point a
classical bit (brown timeline)
containing the measurement
outcome is introduced. The
operation BB is illustrated 
as a black box. The numbers
underneath the network refer
to checkpoints used to
explain how the network
solves the parity problem.
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(51)   

Measurements of A and B now reveal the previously unknown bA and bB.
As can be seen, the visual representation of a quantum network eases the tasks of fol-

lowing what happens. This is why it is used extensively for presenting basic subroutines
and algorithms in quantum computation. A guide to the commonly used network ele-
ments is given in Table I. 

When designing or describing complicated algorithms for quantum computers, pro-
viding everything in terms of quantum networks can become difficult, particularly
when an important part of the algorithm consists of computations that are best done on
a classical computer. For example, a full description of Shor’s algorithm for factoring
integers (see the article “From Factoring to Phase Estimation” on page 38) includes a
significant amount of classical preprocessing, which determines choices made in the
quantum algorithm, and classical postprocessing, which computes a factor from the
measured result by a continued fraction algorithm. For such algorithms, one can use a
programming language similar to Pascal, BASIC, or C enhanced with statements to
access quantum bits and to apply quantum operations. For algorithm design, computer
scientists often use a semiformal language called pseudocode (Cormen et al. 1990).
With a simple extension called quantum pseudocode, the algorithm for the parity 
problem can be written as follows:

BBPARITY(BB)

Input: Access to a quantum black box BB that acts on three qubits by adding a 
parity function of the first two qubits to the third 

Output: The two bits bA and bB of the parity function

foreach i ∈ {A, B, C}

← |�〉

C: Initialize three one-qubit registers      , i = A, B, C. 

The corner bracket annotation declares ai as a quantum register. 

end

← σx

foreach i ∈ {A, B, C}

← H  

end

← BB

C: refers to the three-qubit register consisting of the       . 

foreach i ∈ {A, B}

← H

ψ
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ai

a

aC

ai

aC

ai ai

a

a ai

ai ai



bi ← meas

end

return bA, bB

end

Any classical programming language can be extended with statements to access and
manipulate quantum registers. 

Now, that we have looked at the quantum solution to the parity problem, let us 
consider the question of the least number of black-box applications required by a classical
algorithm: Each classical use of the black box can only give us one bit of information. In
particular, one use of the black box with input aAaB reveals only the parity of aAaB accord-
ing to the hidden parameters bA and bB. Each use of the black box can therefore only help
us distinguish between two subsets of the four possible parities. At least two uses of the
black box are therefore necessary. Two uses are also sufficient. To determine which of the
four parities is involved, use the black box first with input aAaB = 10 and then with input
aAaB = 01. As a result of this argument, one can consider the parity problem as a simple
example of a case in which there is a more efficient quantum algorithm than is possible
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Table I. Quantum Network Elements

Gate Names
and Their

Abbreviations
Gate

Symbols Algebraic Form Matrix Form

Add/Prepare, add
0

If applied to an existing qubit

{|�〉〈�|, |�〉〈�|}
(operator mixture)

1 0

0 0

or

0 1

0 0

































  

Measure, meas
Z b

{�:|�〉〈�|,�:|�〉〈�|} 1 0

0 0

or

0 0

0 1

































  

Not, not, σx

or

|�〉〈�| + |�〉〈�| 0 1

1 0













Hadamard, H
H e–iσyπ / 4σz 1

2

1 1

1 1−

















Phase Change, S(eiφ) ei eiφ / 2e–iσzφ / 2 1 0

0 eiφ











ai
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Table I. (Continued)

Gate Names
and Their

Abbreviations
Gate

Symbols Algebraic Form Matrix Form

y-Rotation, Yθ Y e–iσyθ / 2 cos /2 sin /2

sin /2 cos /2

θ θ

θ θ

( ) − ( )

( ) ( )









x-Rotation, Xθ X e–iσxθ / 2 cos /2 sin /2

sin /2 cos /2

θ θ

θ θ

( ) − ( )

− ( ) ( )

















i

i

Controlled not, cnot

B

A

or

|�〉A
A〈�|  +  |�〉A

A〈�|σx
(B)

e–iσz
(A)π  / 4e–i / 2(1– σz(A)) σx(B)π  / 2

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
















zz-Rotation, (ZZ)θ
Z
Z

e–iσz
(A) σz

(B) θ  / 2 e

e

e

e

i

i

i

i

−

−



















θ

θ

θ

θ

/2

/2

/2

/2

0 0 0

0 0 0

0 0 0

0 0 0

Controlled Rotation,
cUθ

B

A

U

|�〉A
A〈�|  +  |�〉A

A〈�|e–iσU
(B)  θ   /  2 1 0 0 0

0 1 0 0

0 0

0 0

U /2e i−































σ θ

Toffoli Gate, c2not

B

A

C

1– |��〉AB
AB〈��| + |��〉AB

AB〈��|σx
(C)

z-Rotation, Zφ Z e–iσzφ / 2
e

e

i 2

i 2

−















φ

φ

/

/

0

0


























classically. However, it is worth noting that the comparison is not entirely fair: A truly classi-
cal oracle answering parity questions or implementing the black box on the states of classical
bits is useless to a quantum algorithm. To take advantage of such an algorithm, it must be
possible to use superpositions that are not implicitly collapsed. Collapse can happen if 
the oracle makes a measurement or otherwise “remembers” the question that it was asked.

Resource Accounting

When trying to solve a problem using quantum information processing, an important
issue is to determine what physical resources are available and how much of each
resource is needed for the solution. As mentioned before, in classical information, the
primary resources are bits and operations. The number of bits used by an algorithm is its
space requirement; the number of operations used, its time requirement. If parallel com-
putation is available, one can distinguish between the total number of operations (work)
and the number of parallel steps (time).

When quantum information processing is used, the classical resources are still 
relevant for running the computer that controls the quantum system and performs any
preprocessing and postprocessing tasks. The main quantum resources are analogous to
the classical ones: Quantum space is the number of qubits needed, and quantum time,
the number of quantum gates. Because it turns out that reset operations have a thermo-
dynamic cost, one can count irreversible quantum operations separately. This accounting
of the resource requirements of algorithms and of the minimum resources needed to
solve problems forms the foundation of quantum complexity theory. 

As a simple example of resource accounting, consider the algorithm for the parity
problem. No classical computation is required to decide which quantum gates to apply
or to determine the answer from the measurement. The quantum network consists of a
total of 11 quantum gates (including add and meas operations) and one oracle call (the
application of the black box). In the case of oracle problems, one usually counts the
number of oracle calls first, as we have done in discussing the algorithm. The network is
readily parallelized to reduce the time resource to 6 steps. 

Part III: Advantages of Quantum Information

The notion of quantum information as explained in this primer was established in the
1990s. It emerged from research focused on understanding how physics affects our
capabilities to communicate and process information. The recognition that usable types
of information need to be physically realizable was repeatedly emphasized by Rolf
Landauer, who proclaimed that “information is physical” (1991). Beginning in the
1960s, Landauer studied the thermodynamic cost of irreversible operations in computa-
tion (1961). Charles Bennett showed that, by using reversible computation, this cost can
be avoided (1973). Limitations of measurement in quantum mechanics were investigated
early by researchers such as John von Neumann (1932a and 1932b) and later by
Alexander Holevo (1973b) and Carl Helstrom (1976). Holevo introduced the idea of
quantum communication channels and found bounds on their capacity for transmitting
classical information (1973a). Initially, most work focused on determining the physical
limitations placed on classical information processing. The fact that pairs of two-level
systems can have correlations not possible for classical systems was proved by John
Bell (1964). Subsequently, indications that quantum mechanics offers advantages to
information processing came from Stephen Wiesner’s studies of cryptographic applica-
tions in the late 1960s. Wiesner’s work was not recognized, however, until the 1980s,
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when Bennett, Gilles Brassard, Seth Breidbart, and Wiesner introduced (1982) the idea
of quantum cryptography, which can be used to communicate in secret. 

Initially, the term quantum computation was mostly used to refer to classical comput-
ers realized with quantum mechanical systems. In the 1980s, Paul Benioff (1980),
Richard Feynman (1982), and Yuri Manin (1980) introduced the idea of a quantum com-
puter based on quantum information. They noted that the apparent exponential complex-
ity of simulating quantum mechanics on a classical computer might be overcome if one
could use a computer based on quantum mechanics. A formal model of quantum Turing
machines was soon defined by David Deutsch (1985), who later also introduced quan-
tum networks (1989). Deutsch and Richard Jozsa (1992) were the first to introduce a
black-box problem that could be solved deterministically on a quantum computer in
fewer steps than on a classical computer. 

In spite of suggestions that it could lead to large efficiency improvements in simulat-
ing physics, quantum information processing was still largely an academic subject.
Based on work by Ethan Bernstein and Umesh Vazirani (1993) that formalized quantum
complexity theory, Dan Simon (1994) showed that, for black-box problems, quantum
computers can be exponentially more efficient than classical deterministic or probabilis-
tic computers, giving the first indication of a strong advantage for quantum information
processing. It was Shor’s algorithm for factoring large integers (1994 and 1997) that
finally convinced a larger community that quantum information was more than just a
tool for realizing classical computers. This change in attitude was in no small part due to
the fact that the security of commonly used cryptographic protocols is based on the dif-
ficulty of factoring. 

At that point, it was still generally believed that the fragility of quantum states made
it unlikely for reasonably large quantum computers to be realized in practice. But the
discovery by Shor (1995) and Andrew Steane (1996) that quantum error correction was
possible soon changed that view (for an introductory overview, see the article on quan-
tum error correction on page 188). 

Because the usefulness and realizability of quantum information has been recognized,
the science of quantum information processing is a rapidly growing field. As quantum
information becomes increasingly accessible by technology, its usefulness will be more
apparent. The next few sections discuss what we currently know about applications of
quantum information processing. Refer to Michael Nielsen and Isaac Chuang (2001) as
a useful reference text on quantum computation and information with historical notes. 

Quantum Algorithms

Shor’s factoring algorithm, which precipitated much of the current work in quantum
information processing, is based on a quantum realization of the fast Fourier transform. 
The most powerful version of this technique is now represented by the phase estimation
algorithm of Kitaev (1995) as formalized by Richard Cleve et al. (1998). (For an explana-
tion, see the article “From Factoring to Phase Estimation” on page 38.) The best-known
application of quantum factoring is cryptanalysis, where it allows efficiently breaking the
currently used public-key cryptographic codes. Whether there are any constructive applica-
tions of quantum factoring and its generalizations remains to be determined. For users of
public-key cryptography, a crucial question is, “How long can public-key codes based on
factoring continue to be used safely?” To attempt an answer to this question, one can note
that to break a code with a typical key size of 1000 bits requires more than 3000 qubits and
108 quantum gates, which is well out of reach of current technology. However, it is conceiv-
able that a recording of encrypted information transmitted in 2000 can be broken in the next
“few” decades. 
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Shor’s quantum factoring algorithm was not the first with a significant advantage over
classical algorithms. The first proposed quantum algorithms with this property were for sim-
ulating quantum mechanical systems. These algorithms simulate the evolution of a reason-
ably large number of interacting quantum particles—for example, the electrons and nuclei in
a molecule. The algorithms’ outputs are what would be measurable physical quantities of the
system being simulated. The known methods for obtaining these quantities on classical
computers scale exponentially with the number of particles, except in special cases. 

The idea of using quantum computers for simulating quantum physics spurred the
work that eventually led to the quantum factoring algorithm. However, that idea did not
have the broad scientific impact that the quantum factoring algorithm had. One reason
is that, because of its cryptographic applications, factoring is a heavily studied problem
in theoretical computer science and cryptography. Because so many people have tried to
design efficient algorithms for factoring and failed, the general belief that factoring is
hard for classical computers has a lot of credibility. In contrast, a quantum physics sim-
ulation has no simple formulation as an algorithmic problem suitable for study in theo-
retical computer science. Furthermore, many researchers still believe that the physically
relevant questions can be answered with efficient classical algorithms, requiring only
more cleverness on the part of algorithm designers. Another reason for the lack of
impact is that many of the fundamental physical quantities of interest are not known to
be efficiently accessible even on quantum computers. For example, one of the first
questions about a physical system with a given Hamiltonian (energy observable) is,
“What is the ground-state energy?” It is known that the ability to efficiently answer this
question for physically reasonable Hamiltonians leads to efficient algorithms for hard
problems, such as the traveling salesman or the scheduling problems. In spite of occa-
sional claims to the contrary, an efficient quantum solution to these problems is widely
considered unlikely. 

Most quantum algorithms for physics simulations are based on a direct emulation of
a quantum mechanical system’s evolution. The focus of the original proposals by
Feynman and others was on how to implement the emulation using a suitable formula-
tion of general-purpose quantum computers. After such computers were formalized by
Deutsch, the implementation of the emulation was generalized and refined by Seth
Lloyd (1996), Wiesner (1996), and Christof Zalka (1998). The ability to emulate the
evolution of quantum systems is actually widely used by classical Monte Carlo algo-
rithms for simulating physics. In those algorithms, state amplitudes are, in effect, repre-
sented by expectations of random variables that are computed during the simulation. As
in the case of quantum algorithms for physics emulation, Monte Carlo algorithms effi-
ciently evolve the representation of the quantum system. The inefficiency of the classical
algorithm arises only in determining a physical quantity of interest. In the case of Monte
Carlo algorithms, the measurement of a physical quantity suffers from the so-called sign
problem, often resulting in exponentially large, random errors that can be reduced only
by repeating the computation exponentially many times. In contrast, the quantum algo-
rithms for emulation can determine many (but not all) of the interesting physical quanti-
ties with polynomially bounded statistical errors. How to efficiently implement measure-
ments of these quantities has been the topic of more recent work in this area, much of
which is based on variants of the phase-estimation algorithm (Terhal and DiVincenzo
2000, Knill and Laflamme 1998, Abrams and Lloyd 1999, Ortiz et al. 2001,
Miquel et al. 2002). 

Although several researchers have suggested that there are interesting quantum physics
simulations that can be implemented with well below 100 qubits, one of the interesting
problems in this area of research is to come up with a specific simulation algorithm using
small numbers of qubits and quantum gates, an algorithm that computes an interesting
physical quantity not easily obtainable using available classical computers. 
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Another notable algorithm for quantum computers, unstructured quantum search, was
described by Lov Grover (1996). Given is a black box that computes a binary function f
on inputs x with 0 ≤ x < N. The function f has the property that there is a unique input a
for which f(a) = 1. The standard quantum version of this black box implements the trans-
formation f̂ |x〉|b〉 = |x〉|b ⊕ f(x)〉, where b is a bit and b ⊕ f(x) is computed modulo 2.
Unstructured quantum search finds a quadratically faster, that is, in time of order N1/2,
than the best classical black-box search, which requires time of order N. The context for
this algorithm is the famous P ≠ NP conjecture, which is captured by the following 
algorithmic problem: Given is a classical circuit C that computes an output. Is there an
input to the circuit for which the circuit’s output is �? Such an input is called a satisfying
input or assignment. For any given input, it is easy to check the output, but an efficient
algorithm that finds a satisfying input is conjectured to be impossible. This is the P ≠ NP
conjecture. Generalizations of Grover’s search algorithm—amplitude amplification
(Brassard et al. 1998)—allow finding satisfying inputs faster than naive, classical search
does, which tries every possible input in some, possibly random, order. It is worth noting,
however, that if sufficient classical parallelism is available, quantum search loses many 
of its advantages. 

The three algorithms just described capture essentially all the known algorithmic
advantages of quantum computers. Almost all algorithms that have been described are
applications of phase estimation or of amplitude amplification. These algorithms well
justify developing special-purpose quantum information-processing technology. Will
general-purpose quantum computers be useful? More specifically, what other algorith-
mic advantages do quantum computers have? 

Quantum Communication

Quantum communication is an area in which quantum information has proven (rather
than conjectured) advantages. The best-known application is quantum cryptography,
whereby two parties, Alice and Bob, can generate a secret key using a quantum communi-
cation channel (for example, photons transmitted in optical fiber) and an authenticated
classical channel (for example, a telephone line). Any attempt at learning the key by eaves-
dropping is detected. A quantum protocol for generating a secret key is called a quantum-
key-exchange protocol. There are no equally secure means for generating a secret key by
using only classical deterministic channels. Few quantum operations are needed to imple-
ment quantum key exchange, and as a result, there are working prototype systems (Hughes
et al. 2000, Townsend 1998, Ribordy et al. 2001). To overcome the distance limitations
(tens of kilometers) of current technology requires the use of quantum error correction and
hence more demanding quantum technology. 

Quantum key exchange is one of an increasing number of multiparty problems that can
be solved more efficiently with quantum information. The area of research concerned with
how several parties at different locations can solve problems while minimizing communi-
cation resources is called communication complexity. For quantum communication com-
plexity (Cleve and Burhman 1997), the communication resources include either shared
entangled qubits or a means for transmitting quantum bits. A seminal paper by Howard
Burhman, Cleve, and Wim van Dam (2000) shows how the nonclassical correlations 
present in maximally entangled states lead to protocols based on such states that are more
efficient than any classical deterministic or probabilistic protocol achieving the same goal.
Ran Raz (1999) showed that there is an exponential improvement in communication
resources for a problem in which Alice and Bob have to answer a question about the 
relationship between a vector known to Alice and a matrix known to Bob. Although this
problem is artificial, it suggests that there are potentially useful advantages to be gained
from quantum information in this setting. 
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Quantum Control

According to Moore’s law of semiconductor technology, the size of transistors is
decreasing exponentially, by a factor of about .8 every year. If this trend continues, then
over the next few decades, devices will inevitably be built whose behavior will be prima-
rily quantum mechanical. For the purpose of classical computation, the goal is to remove
the quantum behavior and stabilize classical information. But quantum information offers
an alternative: It is possible to directly use quantum effects to advantage. Whether or not
this alternative is useful (and we believe it is), the ideas of quantum information can be
used to systematically understand and control quantum mechanical systems. 

The decreasing size of semiconductor components is a strong motivation to strive for
better understanding the behavior of condensed-matter quantum mechanical systems.
But there is no reason to wait for Moore’s law: There are a rapidly increasing number of
experimental systems in which quantum mechanical effects are being used and investi-
gated. Examples include many optical devices (lasers, microwave cavities, entangled
photon pairs), nuclear magnetic resonance with molecules or in solid state, trapped ion
or atom systems, Rydberg atoms, superconducting devices (Josephson junctions and
SQUIDs), and spintronics (electron spins in semiconductor devices). Many of these sys-
tems are being considered as candidates for realizing quantum information processing.
Yet, regardless of the future of quantum information processing, there is ample motiva-
tion for studying these systems. 

Outlook

The science of quantum information processing is promising a significant impact on
how we process information, solve algorithmic problems, engineer nanoscale devices,
and model fundamental physics. It is already changing the way we understand and con-
trol matter at the atomic scale, making the quantum world more familiar, accessible, and
understandable. Whether or not we do most of our everyday computations by using the
classical model, it is likely that the physical devices that support these computations will
exploit quantum mechanics and integrate the ideas and tools that have been developed
for quantum information processing. �
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Glossary

Algorithm. A set of instructions to be executed by a computing device. What
instructions are available depends on the computing device. Typically, instructions 
include commands for manipulating the contents of memory and means for repeating
blocks of instructions indefinitely or until a desired condition is met.

Amplitude. A quantum system with a chosen orthonormal basis of “logical” states |i〉
can be in any superposition Σiαi |i〉 of these states, where Σi|αi|

2 = 1. In such a 
superposition, the complex  numbers αι are called the amplitudes. Note that the 
amplitudes depend on the chosen basis.

Ancillas. Helper systems used to assist in a computation involving other 
information systems.

Bell basis. For two qubits A and B, the Bell basis consists of the four states 
1/√2(|��〉AB ± |��〉AB) and 1/√2(|��〉AB ± |��〉AB).

Bell states. The members of the Bell basis. 
Bit. The basic unit of deterministic information. It is a system that can be in one of two
possible states, � and �.
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Bit sequence. A way of combining bits into a larger system whose constituent bits are 
in a specific order. 

Bit string. A sequence of �s and �s that represents a state of a bit sequence. Bit strings 
are the words of a binary alphabet. 

Black box. A computational operation whose implementation is unknown. Typically, a
black box implements one of a restricted set of operations, and the goal is to determine
which of these operations it implements by using it with different inputs. Each use of the
black box is called a “query.” The smallest number of queries required to determine the
operation is called the “query complexity” of the restricted set. Determining the query
complexity of sets of operations is an important area of computational complexity. 
Bloch sphere. The set of pure states of a qubit represented as points on the surface of 

the unit sphere in three dimensions.
Bra. A state expression of the form 〈ψ| considered to be the conjugate transpose of the 

ket expression |ψ〉.
Bra-ket notation. A way of denoting states and operators of quantum systems with kets 
(for example, |ψ〉) and bras (for example, 〈φ|).
Circuit. A combination of gates applied to information units in a prescribed order. 

To draw circuits, one often uses a convention for connecting and depicting gates. 
See also “network.”

Circuit complexity. The circuit complexity of an operation on a fixed number of 
information units is the smallest number of gates required to implement 
the operation. 

Classical information. The type of information based on bits and bit strings and more 
generally on words formed from finite alphabets. This is the information used for 
communication between people. Classical information can refer to deterministic or 
probabilistic information, depending on the context. 

Computation. The execution of the instructions provided by an algorithm. 
Computational states. See “logical states.”
Computer. A device that processes information.
Density matrix or operator. A representation of pure and mixed states without 

redundancy. For a pure state |ψ〉, the corresponding density operator is |ψ〉〈ψ|. 
A general density operator is a probabilistic combination Σiλi|ψi〉〈ψi|, with Σiλi = 1. 

Deterministic information. The type of information that is based on bits and bit strings.
Deterministic information is classical, but it explicitly excludes probabilistic 
information. 

Distinguishable states. In quantum mechanics, two states are considered 
distinguishable if they are orthogonal. In this case, a measurement exists that is 
guaranteed to determine which of the two states a system is in. 

Efficient computation. A computation is efficient if it requires, at most, polynomially 
many resources as a function of input size. For example, if the computation returns 
the value f(x) on input x, where x is a bit string, then it is efficient if there exists a 
power k such that the number of computational steps used to obtain f(x) is bounded 
by |x|2, where |x| is the length (number of bits) of x.

Entanglement. A nonclassical correlation between two quantum systems most strongly 
exhibited by the maximally entangled states, such as the Bell states for two qubits, and
considered to be absent in mixtures of product states (which are called separable 
states). Often, states that are not separable are considered to be entangled. However,
nearly separable states do not exhibit all the features of maximally entangled states. 
As a result, studies of different types of entanglement are an important component 
of quantum information theory. 

Gate. An operation applied to information for the purpose of information processing.
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Global phase. Two quantum states are indistinguishable if they differ only by a global 
phase. That is, |ψ〉 and eiφ|ψ〉 are in essence the same state. The global phase 
difference is the factor eiφ. The equivalence of the two states is apparent from the fact
that their density matrices are the same. 

Hilbert space. An n-dimensional Hilbert space consists of all complex n-dimensional 
vectors. A defining operation in a Hilbert space is the inner product. If the vectors are
thought of as column vectors, then the inner product 〈x, y〉 of x and y is obtained by 
forming the conjugate transpose x† of x and calculating 〈x, y〉 = x†y. The inner 
product induces the usual squared norm |x|2 = 〈x, x〉. 

Information. Something that can be recorded, communicated, and computed with. 
Information is fungible; that is, its meaning can be identified regardless of the 
particulars of the physical realization. Thus, information in one realization (such as 
ink on a sheet of paper) can be easily transferred to another (for example, spoken 
words). Types of information include deterministic, probabilistic, and quantum 
information. Each type is characterized by information units, which are abstract 
systems whose states represent the simplest information of each type. The 
information units define the “natural” representation of the information. For 
deterministic information, the information unit is the bit, whose states are symbolized
by � and �. Information units can be put together to form larger systems and can be 
processed with basic operations acting on few of them at a time. 

Inner product. The defining operation of a Hilbert space. In a finite dimensional 
Hilbert space with a chosen orthonormal basis {ei : 1 ≤ i ≤ n}, the inner product of 
two vectors x = Σixiei and y = Σiyiei is given by Σixiyi. In the standard column 
representation of the two vectors, this is the number obtained by computing the 
product of the conjugate transpose of x with y. For real vectors, that product agrees 
with the usual “dot” product. The inner product of x and y is often written in the form
〈x, y〉. Pure quantum states are unit vectors in a Hilbert space. If |φ〉 and |ψ〉 are two 
quantum states expressed in the ket-bra notation, their inner product is given by 
(|φ〉)†〈ψ| = 〈φ|ψ〉. 

Ket. A state expression of the form |ψ〉 representing a quantum state. Usually, |ψ〉 is 
thought of as a superposition of members of a logical state basis |i〉. One way to think
about the notation is to consider the two symbols | and 〉 as delimiters denoting a 
quantum system and ψ as a symbol representing a state in a standard Hilbert space. 
The combination |ψ〉 is the state of the quantum system associated with ψ in the 
standard Hilbert space via a fixed isomorphism. In other words, one can think of 
ψ ↔ |ψ〉 as an identification of the quantum system’s state space with the standard 
Hilbert space. 

Linear extension of an operator. The unique linear operator that implements a map 
defined on a basis. Typically, we define an operator U on a quantum system only 
on the logical states U : |i〉 → |ψi〉. The linear extension is defined by U(Σiαi|i〉) = Σiαi|ψi〉. 

Logical states. For quantum systems used in information processing, the logical states 
are a fixed orthonormal basis of pure states. By convention, the logical basis for 
qubits consists of |�〉 and |�〉. For larger dimensional quantum systems, the logical 
basis is often indexed by integers, |0〉, |1〉, |2〉, and so on. The logical basis is often 
called the computational basis, or sometimes, the classical basis. 

Measurement. The process used to extract classical information from a quantum 
system. A general projective measurement is defined by a set of projectors Pi,
satisfying ΣiPi = 11  and PiPj = δijPi. Given the quantum state |ψ〉, the outcome of a 
measurement with the set {Pi}i, is one of the classical indices i associated with a 
projector Pi. The index i is the measurement outcome. The probability of outcome i
is pi = |Pi|ψi〉|

2, and given outcome i, the quantum state “collapses” to Pi|ψi〉/√pi. 
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Mixture. A probabilistic combination of the pure states of a quantum system. Mixtures 
can be represented without redundancy with density operators. Thus, a mixture is of 
the form Σiλi|ψi〉〈ψi|, with λi ≥ 0 and Σiλi = 1 being the probabilities of the states 
|ψi〉. This expression for mixtures defines the set of density operators, which can 
also be characterized as the set of operators ρ satisfying tr(ρ) = 1 and for all 
|ψ〉, 〈ψ|ρ|ψ〉 ≥ 0 (“positive semidefinite operator”). 

Network. In the context of information processing, a network is a sequence of gates 
applied to specified information units. Networks can be visualized as displaying 
horizontal lines that denote the timeline of an information unit. The gates are 
represented by graphical elements that intercept the lines at specific points. A 
realization of the network requires applying the gates to the information units in 
the specified order (left to right). 

Operator. A function that transforms the states of a system. Operators may be restricted
depending on the system’s properties. For example, in talking about operators acting 
on quantum systems, one always assumes that they are linear. 

Oracle. An information processing operation that can be applied. A use of the oracle is 
called a query. In the oracle model of computation, a standard model is extended to 
include the ability to query an oracle. Each oracle query is assumed to take one time 
unit. Queries can reduce the resources required for solving problems. Usually, the oracle 
implements a function or solves a problem not efficiently implementable by the model 
without the oracle. Oracle models are used to compare the power of two models of 
computation when the oracle can be defined for both models. In 1994, for example,
Dan Simon showed that quantum computers with a specific oracle O could efficiently 
solve a problem that had no efficient solution on classical computers with access to the 
classical version of O. At the time, this result was considered the strongest evidence for 
an exponential gap in power between classical and quantum computers. 

Overlap. The inner product between two quantum states.
Pauli operators. The Hermitian matrices σx, σy, and σz acting on qubits, which are 

two-level quantum systems. They are defined in Equation (12). It is often convenient 
to consider the identity operator to be included in the set of Pauli operators. 

Polynomial resources. To say that an algorithm computing the function f(x), where x is 
a bit string, uses polynomial resources (in other words, is efficient) means that the 
number of steps required to compute f(x) is bounded by |x|k for some fixed k. Here,
|x| denotes the length of the bit string x. 

Probabilistic bit. The basic unit of probabilistic information whose state space consists 
of all probability distributions over the two states of a bit. The states can be thought 
of as describing the outcome of a biased coin flip before the coin is flipped. 

Probabilistic information. The type of information obtained by extending the state 
spaces of deterministic information to allow arbitrary probability distributions over 
the deterministic states. This is the main type of classical information with which 
quantum information is compared. 

Probability amplitude. The squared norm of an amplitude with respect to a chosen 
orthonormal basis {|i〉}. Thus, the probability amplitude is the probability with which 
the state |i〉 is measured in a complete measurement that uses this basis. 

Product state. For two quantum systems A and B, product states are of the form 
|ψ〉Α|φ〉Β. Most states are not of this form. 

Program. An algorithm expressed in a language that can be understood by a particular 
type of computer. 

Projection operator. A linear operator P on a Hilbert space that satisfies P2 = P†P = P. 
The projection onto a subspace V with orthogonal complement W is defined as 
follows: If x ∈ V and y ∈ W, then P(x + y) = x. 
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Pseudocode. A semiformal computer language intended to be executed by a standard 
random-access machine, which is a machine model with a central processing unit 
and access to a numerically indexed unbounded memory. This machine model is 
representative of the typical one-processor computer. Pseudocode is similar to 
programming languages such as BASIC, Pascal, or C but does not have specialized 
instructions for human interfaces, file management, or other “external” devices. Its 
main use is to describe algorithms and enable machine-independent analysis of the 
algorithms’ resource usage. 

Pure state. A state of a quantum system that corresponds to a unit vector in the Hilbert 
space used to represent the system’s state space. In the ket notation, pure states are 
written in the form |ψ〉 = Σiαi|i〉, where the |i〉 form a logical basis and Σi|αi|

2 = 1. 
Quantum information. The type of information obtained when the state space of 

deterministic information is extended by normalized superpositions of deterministic 
states. Formally, each deterministic state is identified with one of an orthonormal basis 
vector in a Hilbert space, and normalized superpositions are unit-length vectors 
expressible as complex linear sums of the chosen basis vectors. It is convenient to 
extend this state space further by permitting probability distributions over the quantum 
states (see the entry for “mixtures”). This extension is still called quantum information. 

Qubit. The basic unit of quantum information. It is the quantum extension of the 
deterministic bit, which implies that its state space consists of the unit-length vectors 
in a two-dimensional Hilbert space. 

Readout. A method for obtaining human-readable information from the state of a 
computer. For quantum computers, readout refers to a measurement process used to 
obtain classical information about a quantum system. 

Reversible gate. A gate whose action can be undone by a sequence of gates. 
Separable state. A mixture of product states. 
States. The set of states for a system characterizes the system’s behavior and 

possible configurations. 
Subspace. For a Hilbert space, a subspace is a linearly closed subset of the vector space.

The term can be used more generally for a system Q of any information type:
A subspace of Q or, more specifically, of the state space of Q is a subset of the state 
space that preserves the properties of the information type represented by Q. 

Superposition principle. One of the defining postulates of quantum mechanics 
according to which if states |1〉, |2〉, . . . are distinguishable, then Σiαi|i〉 with 
Σi|αi|

2 = 1 is a valid quantum state. Such a linear combination is called a normalized 
superposition of the states |i〉. 

System. An entity that can be in any of a specified number of states. An example is 
a desktop computer whose states are determined by the contents of its various 
memories and disks. Another example is a qubit, which can be thought of as a 
particle whose state space is identified with complex, two-dimensional, length-one 
vectors. Here, a system is always associated with a type of information that 
determines the properties of the state space. For example, for quantum information,
the state space is a Hilbert space. For deterministic information, it is a finite set 
called an alphabet. 

Unitary operator. A linear operator U on a Hilbert space that preserves the inner 
product. That is, 〈Ux, Uy〉 = 〈x, y〉. If U is given in matrix form, then this expression 
is equivalent to U†U = 11. 

Universal set of gates. A set of gates that satisfies the requirement that every 
allowed operation on information units can be implemented by a network of these 
gates. For quantum information, it means a set of gates that can be used to implement
every unitary operator. More generally, a set of gates is considered universal if, for 
every operator U, there are implementable operators V arbitrarily close to U.
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The publication of Shor’s quantum algorithm for efficiently factoring numbers
(1994 and 1997) was the key event that stimulated many theoretical and experi-
mental investigations of quantum computation. One of the reasons why this 

algorithm is so important is that the security of widely used public-key cryptographic
protocols relies on the conjectured difficulty of factoring large numbers. An elementary
overview of these protocols and the quantum algorithm for breaking them is provided in
Artur Ekert (1998).1 Here, we outline the relationship between factoring and the power-
ful technique of phase estimation. This relationship helps in understanding many of the
existing quantum algorithms and was first explained in Richard Cleve et al. (1998). This
explanation was motivated by Alexei Kitaev’s version (1995) of the factoring algorithm. 

The factoring problem requires writing a whole number N as a product of primes.
(Primes are whole numbers greater than 1 that are divisible without remainder only by 1
and themselves.) Shor’s algorithm solves this problem by reducing it to instances of the
order-finding problem, which will be defined below. The reduction is based on basic
number theory and involves efficient classical computation. At the core of Shor’s algo-
rithm is a quantum algorithm that solves the order-finding problem efficiently. In this
case, an algorithm is considered efficient if it uses resources bounded by a polynomial
in the number of digits of N. For more information on the requisite number theory, see
any textbook on number theory (Bolker 1970, Hardy and Wright 1979). 

We begin by showing that factoring reduces to order finding. The first observation is
that, to factor a whole number, it is sufficient to solve the factor-finding problem, whose
statement is, “Given a whole number N, find a proper factor of N if one exists. A factor
of N is a whole number f that satisfies N = fg for some whole number g. The factor f is
proper if f ≠ 1 and f ≠ N. For example, if N = 15, then 3 and 5 are its proper factors. For
some numbers, it is easy to find proper factors. For example, you can tell that N is even
from the least significant digit (in decimal or binary), in which case, 2 is a proper factor
(unless N = 2, a  prime). But many numbers are not so easy. As an example, you can try
to find a factor of N = 149,573 by hand.2 You can complete the factorization of a whole
number by recursively applying an algorithm for the factor-finding problem to all the
proper factors found. 

Before we continue the reduction of factoring to order finding, we will briefly
explain modular arithmetic, which both simplifies the discussion and is necessary to
avoid computing with numbers that have exponential numbers of digits. We say that a
and b are equal modulo N, written as a = b mod N, if a – b is divisible by N (without
remainder). For example, 3 = 18 mod 15 = 33 mod 15. Equality modulo N is well
behaved with respect to addition and multiplication. That is, if a = b mod N and c = d
mod N, then a + c = b + d mod N, and  ac = bd mod N. For factoring N, we will be look-
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ing for whole numbers a that are divisible by a proper factor of N. If a has this property,
then so does any b with b = a mod N. We therefore perform all arithmetic modulo N.
One way to think of all this is that we use only whole numbers a that satisfy 
0 ≤ a ≤ N – 1. We can implement each arithmetic operation modulo N by applying 
the operation in the usual way and then computing the remainder after division by N.
For example, to obtain ab mod N, we first compute ab. The unique c such that 
0 ≤ c ≤ N – 1 and c = ab mod N is the remainder after division of ab by N. Thus,
c is the result of multiplying a by b modulo N. Consistent with this procedure, we can
think of the expression a mod N as referring to the remainder of a after division by N. 

The second observation in the reduction of factoring to order finding is that it is suffi-
cient to find a whole number r with the property that r2 – 1 is a multiple of N, but r – 1
and r + 1 are not. Using the language of modular arithmetic, the property is expressed as
r2 = 1 mod N, but r ≠ 1 mod N and r ≠ –1 mod N. Because 1 mod N and –1 mod N are the
obvious square roots of 1 mod N, we say that r is a nontrivial square root of unity
(modulo N). For such an r, one can write r2 – 1 = (r – 1)(r + 1) = mN for some whole
number m. This implies that every prime factor p of N divides either (r – 1) or (r + 1) so
that either (r – 1) or (r + 1) is or shares a factor with N. Suppose that r – 1 is or shares
such a factor. Because r – 1 is not a multiple of N, the greatest common divisor of r – 1
and N is a factor of N. Since an efficient classical algorithm (the Euclidean algorithm)
exists for finding the greatest common divisor, we can easily find the desired proper factor. 

The examples of N = 15 and N = 21 serve to illustrate the key features of the 
algorithm. For N = 15, possible choices for r are r = 4 (42 – 1 = 1 ∗ 15), and 
r = 11 (112 – 1 = 120 = 8 ∗ 15). For the first choice, the proper factors emerge immedi-
ately: 4 – 1 = 3, and 4 + 1 = 5. For the second, it is necessary to determine the greatest
common divisors (or gcd). Let gcd(x, y) stand for the greatest common divisor of x and
y. The proper factors are gcd(11 – 1, 15) = gcd(10, 15) = 5, and gcd(11 + 1, 15) =
gcd(12, 15) = 3. For N = 21, one can take r = 8 as 82 – 1 = 63 = 3 ∗ 21. In this case,
8 – 1 = 7 is a proper factor, and gcd(8 + 1, 21) = 3 is another. 

For N even or a power of a prime, it is not always possible to find a nontrivial square
root of unity. Because both cases can be handled efficiently by known classical algo-
rithms, we can exclude them. In every other case, such numbers r exist. One way to find
such an r is to start from any whole number q, with 1 < q < N. If gcd(q, N) = 1, then
according to a basic result in number theory, there is a smallest whole number k > 1
such that qk – 1 = 0 mod N. The number k is called the order of q modulo N. If k is
even, say, k = 2l, then (ql)2 = 1 mod N, so ql is a (possibly trivial) square root of unity.
For the example of N = 15, we can try q = 2. The order of 2 modulo 15 is 4, which gives
r = 22 = 4, the first of the two choices in the previous paragraph. For N = 21, again with
q = 2, the order is 6: 26 – 1 = 63 = 3 ∗ 21. Thus, r = 23 = 8. We can also try q = 11, in
which case, with foresight, it turns out that 116 – 1 is divisible by 21. A possible prob-
lem appears, namely, the powers qk, which we want to compute, are extremely large.
But modular arithmetic can help us avoid this problem. For example, to find the order of
11 modulo 21 by direct search, we can perform the following computation: In general,
such a direct search for the order of q modulo N is very inefficient, but as we will see,
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there is an efficient quantum algorithm that can determine the order. 

A factor-finding algorithm based on the above observations is the following:

FACTORFIND(N) 

Input: A positive, nonprime whole number N

Output: A proper factor f of N, that is, f is a whole number such that 1 < f < N and 
N = fg for some whole number g. 

1. If N is even, return f = 2.

2. If N = pk for p prime, return p.

3. Randomly pick 1 < q < N – 1.

a. If f = gcd(q, N) > 1, return f.

4. Determine the order k of q modulo N using the quantum order-finding algorithm. 

a. If k is not even, repeat at step 3.

5. Write k = 2l and determine r = ql mod N with l < r < N. 

a. If 1 < f = gcd(r – 1, N) < N, return f. 

b. If 1 < f = gcd(r + 1, N) < N, return f.

c. If we failed to find a proper factor, repeat at step 3. 

The efficiency of this algorithm depends on the probability that a randomly chosen q
at step 3 results in finding a factor. An analysis of the group of numbers q that satisfy
gcd(q, N) = 1 shows that this probability is sufficiently large. 

The main problem left to be solved is finding the order of q mod N. A direct search
for the order of q mod N involves computing the sequence

1 → q → q2 mod N → . . . → qk–1 mod N → 1 = qk mod N . (2)

This sequence can be conveniently visualized as a cycle whose length is the order q mod N
(refer to Figure 1). 

To introduce the quantum algorithm, we first associate the logical quantum states |0〉,
|1〉, . . . |N – 1〉 with the numbers 0, 1,. . . , N – 1. The map f that takes each number on
the cycle to the next number along the cycle is given by f(x) = qx mod N. For q
satisfying gcd(q, N) = 1, the map f permutes not only the numbers on the cycle but 
all the numbers modulo N. As a result, the linear operator  f̂ defined by  f̂ |x〉 = |f(x)〉 = 
|qx mod N〉 is unitary. The quantum algorithm deduces the length of the cycle for q by
making measurements to determine the properties of the action of  f̂ on superpositions of
the states |qs mod N〉. To illustrate the basic ideas, we work out the example of N = 15
and q = 8. The action of  f̂ on the states |1〉, |8〉, |4〉, and |2〉 in the cycle of 8 mod 15 is
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completely determined by the eigenstates and eigenvalues of  f̂ . For cyclicly acting per-
mutations, a basis of eigenstates is given by the Fourier basis for the space spanned by
the states in a cycle. For the cycle of interest, the Fourier basis consists of the states

(3)

The phases of the lth state of the cycle occurring in the sum for |ψm〉 can be written as
ilm. It follows that f̂ |ψm〉 = im|ψm〉, that is, the eigenvalue of  f̂ for |ψm〉 is im. Note that,
in complex numbers, the powers of i are all the fourth roots of unity. In general,
the Fourier basis for the cycle . . . → |ql mod N〉 → . . . consists of the states 
|ψm〉 = Σlωlm|ql mod N〉, where ω = ei2π /k is a primitive kth root of unity. (The com-
plex number x is a primitive kth root of unity if k is the smallest whole number k > 0
such that xk = 1. For example, both –1 and i are fourth roots of unity, but only i is primi-
tive.) 

It is, of course, possible to express the logical state |1〉 using the Fourier basis

(4)

The key step of the quantum algorithm for order finding consists of a measurement to
estimate a random eigenvalue of  f̂ , whose associated eigenstate occurs in the expression
for |1〉 in terms of the Fourier basis. If the eigenvalue found is a kth root of unity, we
infer that the cycle length is divisible by k and check (using a classical algorithm)
whether this is the order of q. In the example, the random eigenvalues are 1 (the only
primitive first root of unity), i and –i (primitive fourth roots of unity), and –1 (the primi-
tive second root of unity). The order is found if the random eigenvalue is a fourth root of
unity, which happens with probability 1/2 in this case. 
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The quantum algorithm for obtaining an eigenvalue is called the phase estimation
algorithm, and it exploits a more general version of the phase kickback we encountered
in the solution of the parity problem. The phase kickback transfers the eigenvalue of 
an eigenstate of f̂  to a Fourier basis on a number of additional qubits called helper or 
ancilla qubits. Which Fourier state results is then determined by a subroutine called 
the measured quantum Fourier transform. We introduce these elements in the next 
paragraphs. Their combination for solving the general order-finding problem is 
illustrated on page 45. 

Figure 2 shows how to kick back the eigenvalue of an eigenstate of f̂ using a network
implementing the controlled-f̂ operation. The network in Figure 2 can be used with input
|1〉 on the second system. From Equation (4) and the superposition principle, it follows
that the output correlates the different phase kickback states with the four eigenvectors
|ψm〉. That is, the network implements the following transformation:

(5)

The hope is that a measurement of the first qubit can distinguish between the four possi-
ble phases that can be kicked back. However, because the four states are not mutually
orthogonal, they are not unambiguously distinguishable by a measurement. To solve this
problem, we use a second qubit and a controlled-f̂ 2 as shown in Figure 3.

The four possible states |um〉 that appear on the ancilla qubits in the network of
Figure 3 are the Fourier basis for the cycle 0 → 1 → 2 → 3 → 0 and are therefore
orthonormal. If we apply the network of Figure 3 with |1〉 instead of |ψm〉 at the lower
input, the output correlates the four |ψm〉 in the superposition with the |um〉, which makes
the information about the eigenvalues of  f̂ available in the Fourier basis of the two ancil-
la qubits. This approach has the advantage that the states are known, whereas in the
Fourier basis for the cycle of q mod N, the states depend on the numbers in the cycle,
which are not known in advance (except in very simple cases, such as the example we
are working with). 

To learn one of the eigenvalues of  f̂ , the last step is to make a measurement in 
the Fourier basis. For one qubit representing the binary numbers 0 and 1, the Fourier
basis is 1/√2(|0〉 + |1〉) and 1/√2(|0〉 – |1〉), which is constructed as discussed after
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ψmf̂

Figure 2. Phase
Estimation with One Qubit
The input is a product state
on one ancilla qubit and on a
second quantum system, as
shown. The state |ψm〉 on the
second system is an eigen-
state of f̂. For the example
provided in Equation (3), the
eigenvalue is im. A controlled-
f̂ operation is applied to the
input, that is, f̂ is applied to
the second system condition-
al on |��〉 for the ancilla qubit.
In the bra-ket notation, the
total operation can be written
as |��〉〈��| + |��〉〈��|f̂ (system labels
have been omitted). Because
f̂ changes only the phase of
its input, the second system
is unchanged, but the phase
modifies the ancilla qubit’s
superposition as shown.



Equation (3) but using the square root of unity ω = –1 instead of the fourth root i. 
To make a measurement that determines which of the two basis vectors is present, it 
suffices to apply the Hadamard transform H and make a standard measurement, just 
as we did twice in the network of Figure 2 in the article “Quantum Information
Processing” on page 23. A more complicated network works with two qubits represent-
ing the binary numbers from 0 to 3. Such a network is shown in Figure 4.

To see how the network extracts the bits in the index of |ua〉, we can follow the states
as the network is executed. The input state at checkpoint 1 in Figure 4 is given by

(6)

In the last sum, the relevant numbers have been fully expanded in terms of their binary
digits to give a flavor of the general principles underlying the measured Fourier trans-
form. The next step of the network applies a Hadamard gate to the qubit carrying the
most significant digit. To understand how it succeeds in extracting a0, the least signifi-
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Figure 3. Phase
Estimation with Two
Qubits
Using two qubits ensures dis-
tinguishability of the eigenval-
ues of f̂ for the states |ψm〉. The
states of the input qubits are
used to represent the numbers
from 0 to 3 in binary. The most
significant bit (the two’s digit
in binary representation) is
carried by the top qubit. That
is, we make the following iden-
tification: |0〉 = |����〉, |1〉 = |����〉, |2〉
= |����〉, and |3〉 = |����〉. It follows
that the network has the effect
of applying f̂ m conditional on
the input qubits’ logical state
being |m〉.

Z–i H

Z a0

a1

H

Checkpoints:  1 2 3 4

u a a2 1 0∗ +










Figure 4. Measured
Quantum Fourier
Transform on Two Qubits
The two qubits represent the
numbers 0, 1, 2, and 3 . If the
input is one of the Fourier
states |ua〉, where the binary
digits of a are determined by 
a = 2 * a1 + a0, then the meas-
urement outcomes are a0 and
a1, as shown. The numbers
under the network are check-
points used for analysis.
[For details on the measured
Fourier transform, see Griffiths
and Niu (1996).]
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cant bit of a, let b with binary digits b0 and b1 represent one of the logical states of the
two qubits. As before, the most significant bit b1 is represented by the top/first qubit that 
the first Hadamard gate is applied to. The phase of |b〉 in Equation (6) is given by
i(b1∗21+b0∗20)(a1∗21+a0∗20). Next, we determine how the phase depends on b1:

(7)

It follows that, if a0 = 0, the phase does not depend on b1, and if a0 = 1, it changes sign
with b1. This sign change can be detected by performing the Hadamard transform and
measuring, as can be seen explicitly by computing the state after the Hadamard trans-
form at checkpoint 2:

(8)

The phases still show a dependence on a0 via the terms ib0∗20∗a0∗20
= ib0a0. The purpose

of the phase-shift gate conditioned on the measurement outcome is to remove that
dependence. The result is the following state on the remaining qubit at checkpoint 3:

(9)

The final Hadamard transform followed by a measurement therefore results in the bit a1,
as desired. 

The elements that we used to determine the order of 8 modulo 15 can be combined
and generalized to determine the order of any q modulo N with gcd(q, N) = 1. The gen-
eral network is shown in Figure 5. Two features of the generalization are not apparent
from the example. First, in order for the quantum network to be efficient, an efficient
implementation of the controlled f̂ 2l operation is required. To obtain such an implemen-
tation, first note that to calculate f2l (x) = q2l x mod N, it suffices to square q repeatedly 
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modulo N using (q2m)2 mod N = q2m+l mod N until we obtain q2l mod N. The result is
then multiplied by x mod N. This computation is efficient. For any given q, the 
computation can be converted to an efficient network consisting of Toffoli gates 
and controlled-not gates acting on the binary representation of x. The conversion can 
be accomplished with standard techniques from the theory of reversible classical 
computation. The result is an efficient network for ^f 2l. Basic network theory can then be
used to implement the controlled version of this operation (Barenco et al. 1995). 

To understand the second feature, note that we were lucky to anticipate that the order
of 8 modulo 15 was a power of 2, which nicely matched the measured Fourier transform
we constructed on two qubits. The measured Fourier transform on m ancilla qubits can
detect exactly only eigenvalues that are powers of the 2mth root of unity eiπ/2m–1. The
phase kicked back by the controlled operations corresponds to a kth root of unity. Given
a Fourier state on the cycle of q mod N, the resulting state on the ancilla qubits has
phases that go as powers of a kth root of unity. Fortunately, the ancilla’s Fourier basis is
such that the measured Fourier transform picks up primarily those basis states whose
generating phase is close to the kickback phase. Thus, we are likely to detect a nearby 
ω = eilπ/2m–1. It is still necessary to infer (a divisor of) k from knowledge of such an ω.
Because we know that the order k is bounded by N, the number of possible phases
kicked back that are near the measured ω is limited. To ensure that there is only one
possible such phase, it is necessary to choose m such that 2m > N2. (See also Figure 5.) �
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The number m of qubits used for the phase kickback has to
be chosen such that m > 2 * log2(ku), where ku is a known
upper bound on the order k of q mod N. Because N > k, one
can set m = 2 log2(N), where x is the least whole number
s ≥ x. There is an eigenvalue λl = ei2lπ/k of one of the
Fourier eigenvectors associated with the cycle of 
q mod N such that the number a, whose binary digits are
the measurement outcomes, satisfies eiπa/2m–1 ≈ ei2π l /k.
More precisely, with probability above .405, there exists l
such that |a/2m – l/k | ≤ 1/2m+1 (Cleve et al. 1998). Because
any two distinct rational numbers with denominator at most
ku differ by at least 1/k2

u > 2/2m+1, the theory of rational

approximations guarantees that we can uniquely determine
the number l/k. There is an efficient classical algorithm
based on continued fractions that computes r and s with 
r/s = l/k and s = k/gcd(l, k). The probability that gcd(l, k) = 1
is at least 1/ (log2(k) + 1), in which case we learn that 
s = k and this is the order of q mod N. Note that the com-
plexity of the network depends on the complexity of 
implementing the controlled f̂ 2l operations. Because these
operations can be implemented efficiently, the network 
and hence the determination of the order of q mod N are
efficient in the sense that, on average, polynomial resources
in log2(N) suffice.

Figure 5. Network for Quantum Order Finding and Phase Estimation 



How can quantum computers do the amazing things that they are able to do, such
as factoring large numbers and finding discrete logarithms? What makes them
so different from classical computers? These questions are often asked, and they

have proved to be surprisingly difficult to answer—at least to the satisfaction of every-
one! In this short article, I’ll try to address these questions by comparing the operation
of a quantum computer with playing the game of 20 questions. But first, let’s consider an
unusual perspective on computers in general. 

What Is a Computer?

Well, a computer is really just some physical machine that you prepare in a certain
way, manipulate in certain ways, and then watch to observe the results it displays. That
is how physicists might describe the entire physical process that mathematicians call a
computation. This view seems a bit strange at first because we have become accustomed
to the more abstract view of the computer scientist, who sees a computation as a certain
type of process that acts on an input in order to produce an output. But our physical
description is not really so different. It just emphasizes the physical nature of the com-
putation, something that falls by the wayside in the abstracted view. The initial prepara-
tion is what a computer scientist calls an input, the actual computation is the physical
manipulation, and the observation at the end results in getting the output. So, whereas a
computation can be viewed abstractly as a process, its physical nature can also be
emphasized. This view will help us make the transition to understanding what a quan-
tum machine is doing in a special way. Unlike classical computers, which are physical
devices manipulated according to the laws of classical physics, quantum computers are
physical devices manipulated according to the laws of quantum physics. 

46 Los Alamos Science Number 27  2002

QUESTIONS,
Quantum Computers, 
and Cryptography

quantum computers

quantum computers
cryptography

cryptography2OO
A mathematical metaphor for the power of quantum algorithms

Mark Ettinger



Quantum Computers and the 20 Questions Game

Having understood that a computation is ultimately a physical process, let’s go on 
to see how using a quantum machine is much like playing the game of 20 questions.
Twenty questions is played as follows. I think of a number between 1 and 220. You try
to guess my secret number by asking questions such as, “Is your secret number less
than 2378?” If you ask your questions well, you can guess my secret number in, at the
most, 20 questions. Why? Well, with each question, you can eliminate half of the
remaining candidates. Computer scientists call this process binary search, and it allows
you to find a secret number less than 2n in log 2n = n questions at the most. The key
idea is that, by cutting the number of possibilities in half with each question, you are
left with one possibility after only n questions. This principle generalizes. For example,
if you are searching for a secret item among N possibilities and with each question 
you are able to eliminate a fraction 1 – 1/c of the possibilities, then you can find the
secret in logcN questions. In general, you might not be looking for a number. You
might be looking for a secret element x in a set S called a search space. The key to
quick success is still to be able to eliminate a constant fraction of the remaining 
candidates. Now, let’s consider a slightly different version of this game, which we call
“random 20 questions.”

In playing random 20 questions, you don’t get to choose your question. Instead, you
randomly select a subset Q (used for the word “question”) consisting of half of the
N elements in the search space, and you ask, “Is the secret element in Q?” After I give
you the honest answer, you choose a new random subset Q and ask again. Surprisingly,
again after only about log N questions, you will almost surely have narrowed the possi-
bilities down to the one correct answer. We say “almost surely” because there is a tiny,
tiny chance that you will get unlucky and never be able to eliminate one of the elements
that is not the secret element. This tiny chance is the result of each question having been
selected randomly rather than deterministically, which is the case when playing the 
original 20 questions game. After 2 log N questions, for example, that possibility is
incredibly small. So, even by asking random questions, you can discover the secret ele-
ment quickly. The reason is that, as in the original 20 questions game, you are able to
eliminate each incorrect element as a possibility. Although in the random 20 questions
game this process of elimination is only very highly probable, it is so close to being 
certain that, for all practical purposes, we won’t worry about it. Now, let’s talk about
playing quantum 20 questions. 

In this game, I choose a secret quantum state ρ1 from a search space of quantum
states S = {ρ1, ρ2…, ρΝ}, and I supply a copy of the secret state whenever you request
one. Your task is to discover my secret quantum state by asking quantum questions, that
is, by doing measurements on each requested quantum state and thus getting informa-
tion about the state. Now, let’s back up a bit and clarify these terms. What is a quantum
state? A pure state ψ is simply a vector in a Hilbert space. A mixed state, or more 
simply a state, is a convex combination of pure states ψi, that is, a classical probabilistic
mixture of pure states:

(1)
ρ ψ ψ=  =∑ ∑p pi

i
i i i

i

, .where 1
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Quantum Questions

What is a quantum question? A quantum question is typically called an observable.
We’ll think of a quantum question as simply an orthonormal basis. The answer to a
quantum question will be one of the basis vectors. So, suppose the secret quantum state
is a pure state |ϕ〉 and the quantum question is {|φ1〉, |φ2〉,…, |φΜ〉}, a basis of the
M-dimensional Hilbert space. According to the basic rules of quantum mechanics, we
get the answer |φ〉 with probability |〈φ |ϕ〉| 2. If we have a mixed state instead of a pure
state, the probability formula is extended by convexity, as usual. How many quantum
questions does it take to guess the secret quantum state? That depends on lots of things.
It depends on what quantum questions you are allowed to ask me. And it also depends
on how different the states in S are from each other. In this context, the word “different”
means how distinguishable the states are from each other. For example, two orthogonal
pure states are as different as two states can be. Two very nearly parallel pure states are
almost indistinguishable in that it takes many experiments and questions to tell them
apart based on the outcome statistics. The standard measure of similarity between two
pure states is simply their overlap 〈φ |ϕ〉. There are measures for the similarity or over-
lap of mixed states as well, but we won’t need the formula. We just need to know that 
to tell apart two similar states requires many experiments whereas to tell apart two very
different states requires few experiments. 

So, going back to quantum 20 questions, let’s assume you can ask any quantum
question you want; that is, you can choose any orthonormal basis as the observable. If
all the states in S are sufficiently different from each other, you can find my secret state
after only a few questions. Usually, when we use the word “few” in this context, we
mean log |S| or log2|S| or something like that. (A computer scientist would say that few
means a polynomial function of the logarithm of the size of the search space.) The key
to a fast search is that all the states must be quite different from each other. 

It turns out that playing search games is much like trying to break codes. If you 
try to break a code, you want to look for a cryptographic key. The key is what allows 
you to decipher the code and read the message. One popular code is the RSA. Named
after its inventors—Ronald Rivest, Adi Shamir, and Leonard Adleman—the RSA uses 
as its key the secret factors of a large number N. Now, suppose you are trying to break 
a code by finding a secret key k from among a very large set of possible keys 
K = {k1, k2…, kΜ}. Further suppose that, by some process and without knowing the key,
you can prepare a quantum state ρ corresponding to the key k. So, you now have a state
ρ, which you know comes from the search space S = {ρ1,…, ρM}, which is the set of
states corresponding to all the possible secret keys, but you don’t know exactly which of
the states you have. If the states of S are all sufficiently different, then you can ask quan-
tum questions to determine the secret state efficiently. And if you can find the secret state,
then you can easily figure out the original secret key corresponding to that secret state! 

Indeed, this is precisely how quantum computers would solve various classical crypto-
graphic problems, such as factoring and finding discrete logarithms. A factoring problem
is one in which you are given a very large number N (say, one with 2000 digits), which is
the product of two primes N = pq, and your task is to find p and q. For the discrete loga-
rithm problem, you are given a large prime number p (say, once again, one with
2000 digits) and two numbers a and b less than p. Your task is to find n such that
an = b (mod p). In both cases, you are looking for a secret key k from among a known set
of possible secret keys. Also, in both cases there is a process by which you can prepare a
quantum state from which k can be deduced. Significantly, this preparation process does
not require knowing k.

This last point is important because, if you had to know the key first, then the code-
breaking machine would not be very useful. We will later illustrate this process in an

Playing search games 
is much like trying to
break codes. If you try 
to break a code, you 
want to look for a 
cryptographic key. 
To solve classical 
cyptographic problems
with quantum computers,
you are looking for a
secret key from among 
a known set of possible
secret keys.



example (see the section “Simon’s Problem”). Finally, this process has the special and
important quality that, for two different keys, k1 and k2, the resulting quantum states, ρ1 and
ρ2, are quite different, or clearly distinguishable from one another, as discussed before. We
can therefore ask quantum questions, which allow us to distinguish among states and iden-
tify secret keys. This ability to distinguish among the states is usually accomplished by
eliminating the possibility of a constant fraction, say 1/2, of the remaining states. As we
saw in the game of 20 questions, eliminating a constant fraction after each question allows
us to narrow the possible states down to the one true state in only log N questions.
However, since the quantum formula gives probabilities for certain outcomes, we eliminate
the false states with high probability (not with certainty), as in the game of random
20 questions. 

Identifying Secret Quantum States

Let us fill in some of the technical details of our sketch. First, can we really ask any
quantum question? No, we can’t, but fortunately we are able to ask the questions that let us
solve factoring and discrete logarithm problems. Recalling our observation that a computa-
tion is actually a physical process, we must be sure to carry out efficiently the physical
process corresponding to the quantum question we wish to ask. We accomplish this task by
breaking down the observable into elementary quantum “gates.” Elementary quantum gates
are analogous to the basic logical gates and, or, and not, which are the building blocks of
circuits in classical computers (for more details, see Shor 1997). In the case of factoring 
and discrete logarithm problems, it turns out that we have to ask only one quantum question
over and over again in order to obtain enough information for identifying the secret 
quantum state. Called the quantum Fourier transform, this quantum question allows us to
distinguish among the states that arise in the two search spaces for the factoring and discrete
logarithm problems. These states are called hidden subgroup states because, in those 
problems, the key we are looking for corresponds to an unknown subgroup H of a finite
abelian group G. The search space corresponds to the set {ρΗ1

, ρH2
,. . . ρHi

}, where H1 to Hi

is a range over all the possible subgroups of G, and ρH is the mixed state that corresponds 
to a uniform mixture of the pure coset states

(2)

It can be shown that for H1 and H2 , two different subgroups, the corresponding states
ρΗ1

and ρH2
are sufficiently different. Mathematically speaking, the overlap of ρΗ1

and
ρH2

is less than 1/2 (Ettinger et al. 1999). For a discussion of the hidden subgroup prob-
lem and the reasons why the quantum Fourier transform is the right quantum question,
see Ettinger and Peter Hoyer (1999). 

Simon’s Problem

To illustrate everything we have discussed, let’s consider a concrete example known
as Simon’s problem. Simon’s problem and the quantum algorithm to solve it contain the
essence of what is going on in the factoring and discrete logarithm problems; the latter
set of problems, however, also contains a number of technical twists that obscure the
main ideas. The set of all bit strings of length n, denoted Z2

n, is a commutative group if

c
H

c
h H

+ = +
∈
∑Η

1
h  .
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we add bit strings using “binary add without carry.” This group will be our search space.
I will secretly choose an element s of this group and provide you with a function in the
form of a “black box,” fs on Z2

n, with the following special property: I guarantee that
fs(x) = fs(y) if and only if x – y = s. So, the function fs encodes the secret bit string s.
Because f depends entirely on s, the latter becomes a subscript on f. If you compute the
function on the elements of the group fs(a), fs(b), fs(c)…, eventually you’ll get a colli-
sion, which means that you’ll find fs(g) = fs(t) and then you’ll know that the secret bit
string is s = g – t. But notice that the search space, or the group, has 2n elements, which
is a very large number. In the worst case, it could take you 2n–1 + 1 calculations to get a
collision, and on average it will take about 2n/2 because of the so-called birthday para-
dox.1 That is still a lot of time! But the quantum algorithm can solve this problem much
more quickly—in about n tries only. 

Here is how Simon’s problem works: You start with a quantum computer whose 
qubits are conceptually divided into two registers. Then you prepare the pure state
|ψ〉 = 1/2n/2 ∑b|b〉, where b ∈ Z2

n. Thus, in the first register, there is a superposition of all
the bs. Now, because you have the black box function fs, you can compute fs(b) in the 
second register to obtain the pure state |ψs〉 = 1/2n/2 ∑b|b〉|fs(b)〉, where again b ∈ Z2

n. Notice
that this procedure for preparing the state ψs is easily accomplished without any knowledge
of the secret bit string s. Of course, for different secret bit strings, we obtain different states.
In fact, this is the key point. Our quantum algorithm is really just a method used to distin-
guish among these different states and thus discover the underlying secret bit string. 

We now observe, or perform a measurement, on the second register. Because of the
way quantum mechanics works, this observation collapses |ψs〉, producing a specific
value in the second register, say c, and the first register is left in a superposition of bit
strings that map to c under fs. Because fs has the special property described earlier,
the bit strings that map to c will differ by the secret bit string s. Therefore, the state of
the computer is

(3)

where a and a + s are elements of Z2
n such that fs(a) = c and fs(a + s) = c. The only use

of the second register is to produce this special superposition in the first register. 
We will no longer use the second register or its contents, so we drop it from our notation
and write 

(4)

When c is chosen, the resulting mixed state can be written as

(5)

Recall that we don’t know the secret bit string s, and therefore we don’t know that
the state we just prepared is ρs. All we know is that we have prepared a state that is in
the search space of quantum states {ρs}s∈Z

2
n . Each of these possible quantum states cor-

responds to a possible secret bit string. Our task is to identify the secret quantum state
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1 The birthday paradox derives its name from the surprising result that you only need 23 people (a slightly larger
number than 3651/2) to have a 50 percent chance that at least two of them have the same birthday.

Our quantum algorithm
for solving Simon’s 
problem allows 
distinguishing among 
different states and 
thus discovering the
underlying secret bit
string.



and thus the secret bit string. We now define the Fourier observable. For each bit string
b in Z2

n, define

(6)

The orthonormal basis is {|χb〉}, where b ∈ Z2
n is called the Fourier basis or the Fourier

observable. Mathematicians might recognize this basis as being composed of the charac-
ters of the group Z2

n. A character χ of a finite abelian group is a homomorphism from
the group to the circle in the complex plane. Formally, the Hilbert space in which we 
are working is C[G], the group algebra, which is the complex vector space with the
canonical basis, or the point mass basis, indexed by the elements of the group. A charac-
ter can be viewed as a vector in C[G] via the following identification:

(7)

It is a fundamental fact (Tolimieri et al. 1997) that the set of characters viewed as
vectors in this way is an orthonormal basis for C[G]. Indeed, a Fourier transform is
nothing other than a change of basis from the point mass basis, {|g〉}g∈G, to the basis of
characters, {|χ〉}χ. 

It is easy to show (Jozsa 1998) that, if we now observe the contents of the remaining
register in the Fourier basis, we observe |χb〉 with nonzero probability if and only if 
s • b = 0 (mod 2). This is the important relationship between the secret bit string s and
the only possible outcomes of the experiment. Therefore, if the actual outcome of the
observation is |χb〉, then we have eliminated half of the possible secret states. We have
therefore eliminated all states ρd such that d • b = 1 (mod 2). By repeating the state
preparation procedure followed by a measurement in the Fourier basis approximately 
n times, we eliminate all possible states except the true secret state ρs. �

Further Reading
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“When two systems, of which we know the
states by their respective representatives,
enter into temporary physical interaction
due to known forces between them, and
when after a time of mutual influence the
systems separate again, then they can no
longer be described in the same way as
before, viz. by endowing each of them with
a representative of its own. I would not 
call that one but rather the characteristic
trait of quantum mechanics, the one that
enforces its entire departure from classical
lines of thought. By the interaction, the 
two representatives (or ψ-functions) have
become entangled.”
—Erwin Schrödinger (1935)



Entanglement, a strong and
inherently nonclassical 
correlation between two or

more distinct physical systems, was
described by Erwin Schrödinger,
a pioneer of quantum theory, as 
“the characteristic trait of quantum
mechanics.” For many years, entan-
gled states were relegated to being
the subject of philosophical argu-
ments or were used only in experi-
ments aimed at investigating the
fundamental foundations of physics.
In the past decade, however, entan-
gled states have become a central
resource in the emerging field of
quantum information science, which
can be roughly defined as the appli-
cation of quantum physics phenom-
ena to the storage, communication,
and processing of information. 

The direct application of entan-
gled states to quantum-based tech-
nologies, such as quantum state tele-
portation or quantum cryptography,
is being investigated at Los Alamos
National Laboratory, as well as other
institutions in the United States and
abroad. These new technologies
offer exciting prospects for commer-
cial applications and may have
important national-security implica-
tions. Furthermore, entanglement is
a sine qua non for the more ambi-

tious technological goal of practical
quantum computation. 

In this article, we will describe
what entanglement is, how we have
created entangled quantum states of
photon pairs, how entanglement can
be measured, and some of its appli-
cations to quantum technologies. 

Classical Correlation and
Quantum State Entanglement

To describe the concept of 
quantum entanglement, we are first
going to describe what it is not! 
Let us imagine the simple experi-
ment illustrated in Figure 1. In that
experiment, a source S1 continually
emits pairs of photons in two direc-
tions. As seen in the figure, one
photon goes toward an observer
named Alice, while the other goes
toward Bob. 

First, imagine that the photons
emitted by S1 are always polarized
in the horizontal direction.
Mathematically, we say that each
photon is in the pure state denoted
by the ket |H〉, that is, the “represen-
tative” of the state Schrödinger
referred to in the quotation on the
opposite page. Because the photons
are paired, the combined state of the

two photons is denoted |HH〉, where
the first letter refers to Alice’s pho-
ton and the second to Bob’s.

Alice and Bob want to measure
the polarization state of their
respective photons. To do so, each
uses a rotatable, linear polarizer, a
device that has an intrinsic trans-
mission axis for photons. For a
given angle φ between the photon’s
polarization vector and the polariz-
er’s transmission axis, the photon
will be transmitted with a probabili-
ty equal to cos2φ. (See the box
“Photons, Polarizers, and
Projection” on page 76.) Formally,
the polarizer acts like a quantum-
mechanical projection operator Pφ
selecting out the component of the
photon wave function that lines up
with the transmission axis. We say
that the polarizer “collapses” the
photon wave function to a definite
state of polarization. If, for exam-
ple, the polarizer is set to an angle θ
with respect to the horizontal, then
a horizontally polarized photon is
either projected into the state |θ〉
with probability cos2θ or absorbed
with probability 1 – cos2θ = sin2θ.
The bizarre aspect of quantum
mechanics is that the projection
process is probabilistic.The fate of
any given photon is completely 
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unknown. Furthermore, any informa-
tion about the photon’s previous
polarization state is lost.

Getting back to the experiment,
we assume that Alice and Bob’s polar-
izers are always aligned in the same
way: When Alice sets her polarizer to
a certain angle, she communicates her
choice to Bob, who uses the same 
setting. Behind each polarizer is a
detector. In our experiment, Alice and
Bob rotate their polarizers to a certain
angle with respect to the horizontal
and record whether they detect a 
photon. Then, they repeat the proce-
dure for different polarizer settings. 
If Alice looks only at her own data 
(or Bob looks only at his), she can
determine the polarization state of the
photons emitted by the source—see
Figure 2(a). But Alice and Bob can
also make a photon-per-photon 
comparison of their data and deter-
mine the probability that they have the

same result, that is, they can examine
the photon–photon correlations. 

Suppose Alice has her polarizer 
oriented to transmit horizontally 
polarized photons. In that case, each
photon coming to her from S1 will be
transmitted, and her detector will
“click,” indicating a photon has
arrived. Subsequent communication
with Bob would reveal that he also
detected each photon, so at this 
polarizer setting, there is a perfect 
correlation between Alice’s detection
of a photon and Bob’s. Similarly,
by rotating the polarizer to the vertical
position, the two would again discover
a perfect correlation, namely, neither
party would detect his or her photons.

The correlation changes when Alice
and Bob have their polarizers oriented,
say, at +45° to the horizontal. In that
case, the photon sent to Alice has a
50 percent chance of passing through
her polarizer, and independently, the

photon sent to Bob has a 50 percent
chance of passing through his. 
The probability is therefore 25 percent
that both Alice and Bob detect a 
photon, 25 percent that neither detects
a photon, and thus 50 percent that they
obtain the same result. 

The correlation function G is 
shown in Figure 2(a′). It is equal 
to the product of the independent 
probabilities for detecting a photon
[(cos2θ)A × (cos2θ)B], plus the prod-
uct of the probabilities for not detecting
one [(sin2θ)A × (sin2θ)B], where sub-
scripts A and B are for Alice and Bob,
respectively. Thus, Alice and Bob
deduce that the two photons are 
independent of each other and the 
wave function is in fact separable:
|HH〉 = |H〉|H〉. In other words, the 
correlation is entirely consistent with
classical probability theory. The pho-
tons are classically correlated.

Now, consider performing the
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Figure 1. A Simple Two-Photon Correlation Experiment  
In this experiment, a source emits pairs of photons: One photon is going to Alice and the other to Bob. Each photon passes
through a linear polarizer on its way to its respective detector. Both Alice and Bob’s polarizers are rotatable and can be
aligned to any angle with respect to the horizontal, but Bob’s is always kept parallel to Alice’s. For a given polarizer setting,
Alice and Bob record those instances when they have the same results, that is, when both detect photons or when they
don’t. The figure shows the source emitting two horizontal photons in the state |Ψ〉 = |HH〉. The experiment can be performed
with other sources to examine differences between other two-photon states. (Picture of Bob is courtesy of Hope Enterprises, Inc.)

Photon source

Polarized photons

Detector

Alice

Bob

Rotatable 
polarizer
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Figure 2. Quantum States, Polarization, and Correlation 
The three sets of graphs show the results of the three experiments discussed in the text. In each case, the leftmost graph shows
the probability that Alice alone detects a photon and reveals information about the net polarization state of her photon. The right-
most graph shows the probability that Alice and Bob have the same result, which reveals information about the two-photon state.

(a) S1 emits photons in the pure
state |HH〉. Alice measures a cos2θ
function for her polarization data
and deduces that photons coming
to her are horizontally polarized.
(A different linear polarization
would shift the curve to the left or
right.) (a′) We define the correla-
tion function G as the probability
that both Alice and Bob detect a
photon, plus the probability that
neither detects a photon. For this
source, G is completely consis-
tent with classical probability 
theory for independent events;
that is, the correlation function 
is the product of the detection
probability of each photon in 
the pair.

(b) The source S2 emits photons
in the partially mixed state
1/2(|HH〉〈HH| + |VV〉〈VV|). Photons
from this source do not have a 
net polarization. Alice receives at
random either an |H〉 or a |V〉 pho-
ton, so the sum of her measure-
ments averages to a 50 percent
detection probability independent
of angle. (b′) The correlation func-
tion G, however, is the same as 
in (a), revealing that the photons
in each pair are independent of
each other and have polarization
H or V. Therefore, the two photons
exhibit the same classical corre-
lations seen in (a).

(c) The source S3 emits photons
in the maximally entangled state
1/√2(|HH〉 + |VV〉). Unlike the 
photons in the mixed state,
each photon is unpolarized.
Nevertheless, if Alice and Bob
align their polarizers the same
way, they always get the same
result independent of angle.
(c′) Polarization measurements of
the two photons are 100 percent
correlated. The photons exhibit
“quantum” correlations.
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Probability that Alice (or Bob) detects a photon: p+ = cos2θ. 
Probability that Alice (or Bob) does not detect a photon: p– = sin2θ.  

For independent photons: G = GHH = p+
A × p+

B + p–
A × p–

B = cos4θ + sin4θ.

For this mixed state, 
G = 1/2(GHH + GVV) = GHH .



experiment with a second source S2
that has a 50 percent chance to emit
two horizontally polarized photons
|HH〉 and a 50 percent chance to emit
two vertically polarized photons |VV〉.
This type of source emits photons in a
mixed state, which cannot be written
as a single “ket.” Instead, a mixed
state must be analyzed in terms of
several kets, each representing a par-
ticular, distinct pure state that has a
probability associated with it. Making
a measurement on a mixed state is

equivalent to probing an ensemble 
of pure states. The likelihood of 
measuring a particular pure state is
given by the appropriate probability.
(More-detailed, mathematical descrip-
tions of pure and mixed quantum
states are found in the box “Pure,
Entangled, or Mixed?” above.) 

The output of S2 is random (either
|HH〉 or |VV〉), so Alice receives at
random either an |H〉 or a |V〉 photon.
Because the probability of detecting
|H〉 is 1/2 cos2θ, and the probability of

detecting |V〉 is 1/2 sin2θ, Alice has a
50 percent chance of detecting a pho-
ton regardless of how she sets her
polarizer. The same is true for Bob.
Each observer, therefore, deduces that
the photons coming from S2 have no
net polarization. But as seen in
Figure 2(b′), the correlation function
tells a different story. In fact, the cor-
relation function for this source is
identical to the one obtained for S1
because, in both cases, the individual
photons leave the source in definite
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A pure state is a vector in a system’s Hilbert space. For
example, the most general, pure two-photon polarization
state can be written as 

|ψpure〉 = α|HH〉 + β|HV〉 + γ |VH〉 + δ |VV〉  . (1)

This state is specified by the four probability amplitudes α,
β, γ, and δ (expressed by four complex numbers or eight
real numbers) although these parameters are subject to two
constraints. The first is that the mean-square amplitudes
must equal unity, that is,

|α |2 + |β |2 + |γ |2 + |δ |2 = 1  . (2)

The second relates to the fact that the overall phase of a
wave function has no physical relevance. The net result of
these constraints is that any pure two-photon state depends
on only six independent real numbers. 

In general, however, any physical system contains a greater
or lesser degree of randomness and disorder, and one must
adapt the formalism of quantum mechanics to take this 
randomness into account. We do so by averaging over 
the fluctuations. It is convenient to represent states as 
density operators, or density matrices, formally defined as 

ρ = |ψ〉〈ψ |  , (3)

where the overbar denotes an ensemble average over the
randomness. All the measurable properties of the state are
determined by ρ. 

The density matrix must be used when representing mixed
states, which can be thought of as probabilistic combina-

tions of pure states. Mathematically, the density matrix
can always be decomposed into an incoherent sum over
pure states,

ρ = Σipi|ψi〉〈ψi|  , (4)

where each |ψi〉 is a pure state and pi are probabilities 
with values that lie between 0 and 1 and whose sum is 1.
In general, this decomposition is not unique. To 
characterize mixed states, one uses mean values and 
classical coherences; that is, one must specify the four
mean-square amplitudes (subject to the constraint 
|α |2 + |β |2 + |γ |2 + |δ |2 = 1) and the six independent 
classical complex correlations α∗β—–

, α∗γ—–
, and so on. 

For example, the source S2 mentioned in the text emits a
partially mixed state that is 50 percent |HH〉 and 50 per-
cent |VV〉, so that 

ρmix = 0.5 |HH〉〈HH| + 0.5 |VV〉〈VV|  , (5)

or in matrix form

(6)

This state is neither pure nor completely random; it is 
partially mixed. 

We next consider whether quantum states involving two 
or more systems (for example, two photons), are separable 

ρmix

.5   0   0   0

 0   0   0   0

 0   0   0   0

 0   0   0  .5 

=





















   .

Pure, Entangled, or Mixed?



polarization states. For S1, the polar-
ization information is “carried” indi-
vidually by each photon. For S2,
the polarization information is carried
by the photon pairs. By examining the
correlations, Alice and Bob can
deduce that information. 

A different situation occurs for a
source S3 that emits pairs of photons
in the state |Φ+〉 = 1/√2 (|HH〉 + |VV〉).
Like the mixed state from S2, this
state is a combination of two horizon-
tally polarized photons and two verti-

cally polarized photons. Unlike the
mixed state, |Φ+〉 is a coherent, quan-
tum mechanical superposition: A prob-
ability amplitude is associated with
each component, |HH〉 and |VV〉, and
the two components have a fixed phase
relationship. An important property of
this particular state is that we can
rotate the axes of polarization (H and
V) and not change the state’s essential
properties.

The state |Φ+〉 is a fully entangled
quantum state. It cannot be factorized,

or separated, into a part describing one
of the photons and a part describing
the other. The two photons are inextri-
cably linked to each other and their
properties are always correlated. 
A measurement of one of the photons
makes the two-photon state instantly
disappear, and the remaining photon
assumes a definite state that is perfectly
correlated with the measured photon.
Neither photon carries definite infor-
mation by itself—all the information is
carried in the joint two-photon state.
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or entangled. If the state is separable and pure, it can be
written (in some basis) as a product of the states of the indi-
vidual systems, that is, as 

|ψ〉 = |ψA〉 ⊗ |ψB〉  , (7)

where ⊗ denotes the tensor product. The state |ψ1〉 = |HH〉 is
one such product of pure states and can be written as 

|ψ1〉 = |HA〉 ⊗ |HB〉  . (8)

Another example is the state 

|ψ〉 = (|HH〉 + |HV〉 + |VH〉 + |VV〉)/2  , (9)

which can be written as the product state 

|ψ〉 = 1/√2(|H〉 + |V〉)A ⊗ 1/√2 (|H〉 + |V〉)B  . (10)

A third example is the matrix ρmix on the opposite page,
which represents a separable mixed state. 

In contrast, if there is no way to write the two-photon state
as a direct product of states, the state is said to be entangled.
This definition leads to a quantity called concurrence, which
is defined for the general pure state |ψpure〉 by

C = 2|αδ – βγ |  . (11)

If and only if C is zero is the state separable. If C is equal to
unity (its maximum value), the state is maximally entangled. 

For example, consider any one of the four Bell states 

|Φ±〉 = 1/√2(|ΗΗ〉 ± |VV〉)  , and 

|Ψ±〉 = 1/√2(|HV〉 ± |VH〉)  . (12)

These states are a basis for the two-photon Hilbert space,
and linear combinations of the four states can be used to
represent any two-photon state. If we compare, say, |Φ+〉
with the general state |ψpure〉, we have α = δ = 1/√2, and
β = γ = 0. Thus C = 1, and this Bell state is maximally
entangled (as are the other three). 

The value of C provides a good metric for the amount
of entanglement in a pure two-qubit system.
Equivalently, some researchers use C2 (a quantity known
as the tangle) to characterize the degree of entanglement. 

The concurrence can also be defined for mixed states,
although the definition is much more complicated.
Indeed, calculating the concurrence for mixed states of
more than two qubits is currently a hot topic of research. 

In the everyday world, it is common to ascribe two (or
more) variables to the same object (for example, a hot,
sweet cup of coffee). Similarly, quantum states are
described by the two characteristics discussed above,
so that it is possible to have a pure entangled state,
a pure separable state, a mixed separable state, or
something in between, such as a partially mixed,
partially entangled state.



Thus, when Alice and Bob repeat
the experiment using the source S3,
the correlation is 100 percent regard-
less of polarizer orientation (assuming
Bob’s polarizer is always set the same
way as Alice’s). Figure 2(c) illustrates
the striking difference between the
classical correlations of the photons
generated by the sources S1 and S2
and the nonclassical correlations
exhibited by entangled photons.

To better understand the correlation
curve shown for |Φ+〉, consider that
quantum mechanics allows us to
express that state in any basis; that is,
|Φ+〉 = 1/√2 (|XX〉 + |YY〉), where |X〉 is
an arbitrary linear-basis state and |Y〉
is the orthogonal-basis state. Suppose
Alice has her polarizer set to +45°. In
the diagonal (+45/–45) basis, the
entangled state will be |Φ+〉 =
1/√2 (|+45,+45〉 + |–45,–45〉). If Alice
detects her photon (a 50–50 proposi-
tion), then Bob’s photon will collapse
to the |+45〉 state, and he will detect
his photon as well. Likewise, if Alice
doesn’t detect her photon, Bob won’t
detect his. The same deductions can
be made for any polarizer setting.  

According to quantum mechanics,
the correlation occurs regardless of
the distance separating the two pho-
tons. For example, suppose one of two
entangled photons from the state |Φ+〉
is sent to Alice, who “stores” it in 
her laboratory at Los Alamos,
New Mexico. The other photon is sent
to Bob, who is in orbit about the star
α-Centauri, nearly 4 light-years away.
After some time, Alice performs 
a measurement on her photon and
determines that it is |H〉. Her measure-
ment selects the |HH〉 part of the state
|Φ+〉 and eliminates the |VV〉 part so
that Bob’s photon is necessarily in 
the state |H〉. If, instead, Alice has
determined that her photon was |+45〉,
the state of Bob’s photon will be
instantly collapsed to |+45〉 as well. In
other words, the state of Bob’s photon
has been nonlocally influenced by
Alice’s measurement. By nonlocal, we

mean that the correlation between
Alice and Bob’s measurements occurs
even if there is not enough time for a
light signal (or any signal) to propa-
gate between the two experimentalists.
This is not to say that special relativity
has been violated: Because Alice 
cannot predetermine the outcome of
her measurement, she cannot use the
nonlocal quantum correlations to send
any information to Bob. In fact, entan-
glement can never be used to send 
signals faster than the speed of light.
Nonetheless, Bob’s photon “knows”
the outcome of Alice’s measurement. 

Nonlocality was the central point of
a famous argument raised by Albert
Einstein, Boris Podolsky, and Nathan
Rosen in 1935, now known as the
EPR paradox. The three physicists dis-
agreed with the Copenhagen interpreta-
tion of quantum mechanics, according
to which the state of a quantum system
is indeterminate until it is projected
into a definite state as a result of a
measurement. Einstein, Podolsky, and
Rosen argued that even unmeasured
quantities corresponded to definite 
“elements of reality.” The quantum
state only appeared to be indeterminate
because some of the parameters that
characterize the system were unknown
and unmeasurable. These local parame-
ters, or “hidden variables,” determined
the outcome of the experiment. 

In 1964, John Bell showed that the
correlations between measured prop-
erties of any classical two-particle 
system would obey a mathematical
inequality, but the same measured cor-
relations would violate the inequality
if the two particles were an entangled
quantum system. Experiments could
therefore determine if nature exhibited
nonlocal features. Following the

development of laboratory sources of
entangled photons, experimental tests
of Bell’s inequality were pursued with
vigor. The results to date suggest that
the observed photon correlations can-
not be explained by any local hidden-
variable theory,1 and most physicists
agree that quantum mechanics is truly
a nonlocal theory. 

Entanglement and 
Quantum Information 

Entanglement, a measurable prop-
erty of quantum systems, can be
exploited for specific goals. Here, we
present three potential applications, all
of which have been shown to work as
proof-of-principle demonstrations in
the laboratory. 

Quantum Cryptography. Consider
two bank managers, Alice and Bob,
who want to have a secret conversa-
tion. If they are together in the same
room, they can simply whisper dis-
cretely to each other, but when Alice
and Bob are in their respective cross-
town offices, their best chance for
secret communication is to encrypt
their messages. 

A generic, classical encryption 
protocol would begin when Alice and
Bob convert their messages to sepa-
rate binary streams of 0s and 1s.
Encryption (locking up the messages)
and decryption (unlocking the mes-
sages) are then performed with a set
of secret “keys” known only to the
two bankers. Each key is a random
string of 0s and 1s that is as long as
the binary string comprising each
message. To encrypt, Alice (the
sender) sequentially adds each bit of
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1 There were two loopholes to the EPR tests. The first stemmed from the fact that 
the detectors were not efficient enough. Consequently, the observed correlations could
have been the result of some new physics that did not require nonlocal interactions. 
The second loophole stemmed from the researchers’ inability to choose rapidly and 
randomly a basis for photon measurement. This inability allowed for a potential 
communication conspiracy between Alice and Bob’s systems. Both of these loopholes
have recently been closed but, so far, not in the same experiment.



the key to each bit of her message,
using modulo 2 addition (0 + 0 = 0,
0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0).
She then sends the encrypted message to
Bob, who decrypts it simply by repeat-
ing the operation, that is, by performing
a sequential, bit-by-bit modulo 2 addi-
tion of the key to the message. 

This type of encryption protocol,
known as a one-time pad, is currently
the only provably secure protocol. But
the one-time pad is effective only if
Alice and Bob never reuse the key,
and more obviously, if the key remains
secret. A potential eavesdropper, Eve,
cannot be allowed to glean any part of

the bit stream that makes up the key.
Therein lies a central problem of cryp-
tography: How can secret keys be cre-
ated and then securely distributed?
The nonlocal correlations of entangled
photons can play a role in this regard.
(One can also exploit the properties of
nonentangled photons in cryptographic
schemes. See the article “Quantum
Cryptography” on page 68.)

In the entangled-state quantum
cryptography scheme, Alice and Bob
perform an experiment similar to the
one described in the first section of
the paper. They use a source S3 that
emits entangled photons in the general

state |Φ+〉 = 1/√2 (|XX〉 +|YY〉), where
|X〉 is an arbitrary linear-basis state
and |Y〉 is the orthogonal-basis state.
One photon goes to Alice and the other
to Bob. In this protocol, however,
either banker can choose—at random
and independent of each other—to use
a half-wave plate (HWP) to rotate
photon polarization by a set amount.
The bankers then detect the photon in
the H/V basis using a polarizing beam
splitter, which transmits horizontally
polarized photons and reflects verti-
cally polarized photons (see Figure 3).
Detection of a horizontally polarized
photon is recorded as a 0; of a verti-

Entangled-photon source 

PBS
H-detector V-detector

Bob

Alice

(1)  +〉 = 1/√// 2 (√√ X,X 〉 + Y,Y 〉)

(2)  '+〉 √√2 (√√ (X + 45),X 〉 + (Y + 45),Y 〉)

(4)  B〉 – 5 〉
(3)  A〉 H 〉

HWP

1

1

0

0

ΦA

Φ+
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Figure 3. Quantum Cryptography Using Entangled Photons

Alice and Bob can use the properties of
entangled photons to create a pair of
identical cryptographic keys. (1) The
source emits entangled photons in a
maximally entangled state |Φ〉 = 1/√2(|XX〉
+ |YY〉), where |X〉 is an arbitrary linear-
basis state and |Y〉 = |X + 90〉 is the
orthogonal-basis state. One photon goes
to Alice and the other to Bob. (2) Alice
chooses at random either to let her pho-
ton pass or to insert a half-wave plate
(HWP), which will rotate her photon by
+45°. The latter choice changes the rela-
tive orientation between the two photons
by +45°. In the case shown, she chooses
to rotate her photon. The new entangled
state is |Φ′〉. (3) Alice uses a polarizing

beam splitter (PBS) to measure her pho-
ton in the H/V basis. This optical element
transmits horizontally polarized photons
and reflects vertically polarized photons,
and her unpolarized photon can collapse
to either a horizontal or vertical polariza-
tion with equal probability. In this case, it
collapses to a horizontal polarization.
Alice records a bit value of 0. (5) Bob’s
photon was entangled with Alice’s, so as
a result of her measurement, his photon
assumed the definite polarization state 
|H – 45〉 = |–45〉. If Bob makes the same
choice as Alice and inserts his HWP, he
will rotate his photon’s polarization by
+45° and into a horizontal polarization.
His photon will register in the H-detector,

and he will record a bit value of 0. If he
makes the opposite choice and doesn’t
rotate his photon, the photon polarized
at –45° has an equal probability of going
to either detector (bit value either 0 or 1).
As seen in Table I on the next page,
whenever Bob and Alice make the same
choice, they keep the bit because their
bit values coincide. If they make oppo-
site choices, they discard the bit since
the values are not correlated. Alice and
Bob can construct an identical sequence
of random bits—a cryptographic key—
simply by declaring their sequence of
choices. The discussion can be public
because the bit values are never
revealed.



cally polarized photon, as a 1. 
After a sufficient number of meas-

urements (that number is dictated by
the length of the key), Alice and Bob
have a public discussion, during
which they reveal whether they insert-
ed the HWP before each measure-
ment. At no time do they reveal the
actual measurement results. Whenever
Alice and Bob make the same choice
(50 percent of the time), they know
from the properties of entangled pho-
tons that they will have completely
correlated results. By contrast, if one
of them uses the HWP and the other
doesn’t, they will discard the results
because their measurements would be
completely uncorrelated (see Table I).
Following this public discussion, each
banker will be able to privately con-
struct the same random string of 0s
and 1s—an ideal key for cryptography.

What about the eavesdropper Eve?
She is completely foiled in her
attempts to know the secret key.
Certainly, she cannot tap the photon
line, as she might with conventional,
classical communications. A single,
indivisible quantum object—namely,
a photon—is the conveyor of infor-
mation in this cryptographic proto-
col. If Eve steals Bob’s photon (a
“denial-of-service” attack), the pho-
ton’s information never becomes part
of the key. Thus, although a wiretap

would reduce the rate of the trans-
mission, it would not jeopardize the
security of the key. 

Eve can try to intercept the photon,
measure it, and send another one to
Bob. But any measurement Eve would
make to determine the photon’s 
polarization state would necessarily
perturb the photon and collapse the
entangled state. The photon she sends
to Bob would therefore be classically
correlated with Alice’s photon.
Consequently, Eve’s intervention
would necessarily induce additional
errors into Bob’s key. 

This last point is significant.
Unlike their theoretical counterparts,
the encryption keys created by an
actual quantum cryptography system
initially have a small fraction of
errors, because real equipment is
always less than perfect. To make
sure their key is secure, Alice and
Bob ascribe all errors to Eve and
then use this “bit error rate” to esti-
mate the maximum amount of infor-
mation available to the eavesdropper.
They then use a privacy amplification
scheme (discussed in the cryptogra-
phy article on page 68) to reduce
Eve’s knowledge of the secret key to
less than one bit. 

But the bit error rate alone can lead
to a false sense of security. If nonentan-
gled photons with a definite polariza-

tion are sent to Bob, it is conceivable
that some other degree of freedom may
also be coupled to the polarization
state. For example, if separate lasers
are used to produce the two polariza-
tion states, the photons from each laser
may have slightly different timing
characteristics or frequency spectra.
Such a difference would in principle
allow an eavesdropper to distinguish
between photons without disturbing
the polarization state and, hence,
without affecting the bit error rate. 

When the photons are entangled,
however, any leakage of information
to other degrees of freedom can be
shown to automatically manifest itself
in the error rate detected by Alice and
Bob. In other words, any degree of
freedom with which the polarization
might be coupled will cause notice-
able effects on the polarization corre-
lations. Therefore, using only the
detected error rates, one can set an
upper limit on the information avail-
able to an eavesdropper, even one
who is not directly measuring the
polarization of the photons, and then
use privacy amplification to eliminate
that information.

As a last resort, Eve may think of
“cloning” Alice’s photon. She could
measure the clone while allowing the
original to continue on to Bob, thus
completely covering her tracks. But she
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Table I. Constructing a Cryptographic Key with Entangled Photons

First Receiver
(Alice)

Second Receiver
(Bob)

Angle of
Rotation

(°)

Detector Bit
Value

Polarization to
Second Receiver

Angle of
Rotation

(°)

Detector Bit
Value

Communication
Results

0 H 0 H 0 H 0 Keep bit

0 V 1 V 0 V 1 Keep bit

0 H 0 H    +45 H or V 0 or 1 Discard bit

0 V 1 V    +45 H or V 0 or 1 Discard bit

   +45 H 0    –45° 0 H or V 0 or 1 Discard bit

   +45 V 1    +45° 0 H or V 0 or 1 Discard bit

   +45 H 0    –45°    +45 H 0 Keep bit
   +45 V 1    +45°    +45 V 1 Keep bit



is again foiled by quantum mechanics.
According to the no-cloning theorem,
it is impossible to make a copy of a
photon in an unknown state while
simultaneously preserving the original.
(See the box “The No-Cloning
Theorem” on page 79.) Eve is clearly
out of business.

Teleportation. In 1993, Charles
Bennett of IBM, Yorktown Heights,
and his colleagues proposed a
remarkable experiment with 
entangled particles, namely, the 
“teleportation” of a pure quantum
state from one location to another. 

Charlie wants to send his friend
Bob a photon in an arbitrary, pure

quantum state |ψ〉 = α |H〉 + β |V〉. He
enlists the aid of Alice, who happens
to run the Teleportation Laboratory
shown in Figure 4. Inside the lab, a
source S3 is emitting a pair of entan-
gled photons, one of which goes off
to Bob. The other photon is input into
Alice’s “teleporter.” Charlie is
instructed to send his photon into the
teleporter as well.

Alice then performs a special joint
measurement of the polarization state
of the two photons in the teleporter.
She relays the result to Bob, who 
subsequently performs a simple trans-
formation of the polarization state of
his photon. As if by magic, the state
of Bob’s photon is transformed into

the state of Charlie’s original photon. 
Mathematically, this magic is

described as follows. The three-
photon initial state (that is, Charlie’s
photon plus the two entangled pho-
tons) can be represented as 

|ψ0〉 = (α |H〉 + β |V〉)C
× 1/√2(|HH〉 + |VV〉)A,B , (1)

where the subscripts C, A, and B refer
to Charlie’s, Alice’s, and Bob’s pho-
tons, respectively. But |ψ0〉 can also
be represented as a superposition of
states, each constructed in the follow-
ing way: Charlie and Alice’s photons
are represented by one of the Bell
states |Φ±〉 = 1/√2 (|ΗΗ〉 ± |VV〉) and 
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Entangled-photon source

Entangled photons To Bob

To Bob

Alice’s “Teleporter”
(Bell state analyzer)

Charlie’s
unknown
photon

(a) Before Bell-State Measurement

(b) After Bell State Measurement

(c) After Classical Communication

Delay
cavity

Optical
elements

Bob’s photon is 
projected into 
a pure state

Bob’s photon assumes 
the same polarization 

state as Charlie’s

Alice relays results 
to Bob

Classical information 

Classical information 
Bob selects 

optical elements

Figure 4. Quantum State
Teleportation 
(a) Alice’s teleportation lab consists of
an entangled photon source and a Bell
state analyzer (the teleporter). One
entangled photon goes to Bob and the
other to the teleporter. Charlie sends a
photon of unknown polarization state
into the teleporter. (b) Alice performs a
joint polarization measurement of the
two photons in the teleporter and
relays the result to Bob using two clas-
sical bits of information. The photon
going to Bob is projected into a pure
state as a result of Alice’s measure-
ment. (c) Upon receiving Alice’s classi-
cal information, Bob performs a simple
transformation on his photon, such as
a rotation of the polarization vector. He
duplicates the polarization state of
Charlie’s photon without knowing any-
thing about its original state.



|ψ±〉 = 1/√2(|ΗV〉 ± |VH〉),

and Bob’s photon is represented as a
photon in a pure state. Thus,

|ψ0〉 = 1/2{|Φ–〉C,A (α|H〉 – β|V〉)B

+ |Φ+〉C,A (α|H〉 + β|V〉)B

+ |Ψ–〉C,A (–β|H〉 + α|V〉)B

+ |Ψ+〉C,A (β|H〉 + α|V〉)B}  .   (2)

Technically speaking, this repre-
sentation is possible because the Bell
states are a basis for the two-photon
Hilbert space and any state of two
photons can be represented as a linear
superposition of these states. It is
important to point out that Alice’s
photon remains entangled with Bob’s.
Teleportation relies on Alice’s ability
to perform a joint polarization meas-
urement that explicitly projects the 
two photons in the teleporter into one
of the four Bell states. Once Alice
completes her measurement, Bob’s
photon (which is totally correlated to
Alice’s) will assume the corresponding
pure state. For example, if the Bell
state measurement produces the result
|Ψ–〉C,A, then Bob’s photon would be
projected into the pure state 
|ψ〉 = (–β |H〉 + α |V〉)B. By using a
simple optical element, Bob can
rotate the polarization state of his
photon by 90° and transform it into
the state |ψ′〉 = (α |Η〉 + β |V〉)B, that
is, the original input state. Provided
Alice can specify which Bell state
was measured (a specification that
requires two bits of classical infor-
mation), Bob can always choose an
appropriate optical element to effect
the proper rotation.

In a series of groundbreaking exper-
iments conducted at the University of
Innsbruck, Austria, Anton Zeilinger

and coworkers were the first to demon-
strate quantum teleportation. The group
is now able to determine two of the
four Bell states unambiguously (the
other two states give the same experi-
mental signature2) and prove for those
cases that the state of Charlie’s photon
could indeed be transferred to Bob’s. 

Several points should be made
about quantum teleportation. First,
during the entire procedure, neither
Alice nor Bob has any idea what the
values are for the parameters α and β
that specify Charlie’s photon. The ini-
tial, arbitrary pure state remains
unknown. Second, teleportation is 
not cloning. The original state of
Charlie’s photon is necessarily
destroyed by Alice’s measurement,
so the photon that Bob ends up with 
is still one of a kind. 

Finally, hopeful sci-fi fans may be
a little disappointed by this realization
of teleportation. Unlike the TV show
“Star Trek,” in which Captain Kirk
could be transported body and soul
from the starship Enterprise to the
surface of an alien planet,3 here only
certain information about the photon
is transferred to a photon in some 
faraway location. Because photons
have numerous degrees of freedom in
addition to their polarization, the orig-
inal and the teleported photons are
two different entities. And it goes
without saying that an even simpler
way for Charlie to send his quantum
state to Bob would be to dispatch the
original photon directly to him. 

Nevertheless, teleportation remains
an interesting application of quantum
state entanglement. Furthermore,
researchers have discussed how it
might form the basis of a distributed
network of quantum communication
channels and how this basic informa-

tion protocol might be useful for
quantum computing. 

Quantum Microscopy and
Lithography. The general topic of
quantum metrology involves capitaliz-
ing on the ultrastrong correlations of
entangled systems to make measure-
ments more precisely than would be
possible with classical tools. The two
main photon-based applications under
investigation are quantum microscopy
and quantum lithography.

At present, two-photon microscopy
is widely used to produce high-
resolution images, often of biological
systems. However, the classical light
sources (lasers) used for the imaging
have random spreads in the temporal
and spatial distributions of the pho-
tons, and the light intensity must be
very high if two photons are to inter-
sect within a small enough volume and
cause a detectable excitation. The high
intensity can damage the system under
investigation. Because the temporal
and spatial correlations may be much
stronger between members of an
entangled photon pair, one could con-
ceivably get away with much weaker
light sources, which would be much
less damaging to the systems being
observed. Moreover, entangled-photon
sources may also enable obtaining
enhanced spatial resolution.

Lithography, in which a pattern is
optically imaged onto some photoresist
material, is the primary method of 
manufacturing microscale or nanoscale
electronic devices. An inherent limita-
tion of this process is that details smaller
than a wavelength of light cannot be
written reliably. However, quantum 
state entanglement might circumvent
this limitation. Under the right circum-
stances, the interference pattern formed
by beams of entangled photon pairs can
have half the classical fringe spacing. 

Quantum lithography requires 
two beams of photons, which we 
will call A and B, but in this case,
the type of entanglement is different
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2 Distinguishing between the four Bell states is still an unsolved technical problem. It
requires a strong nonlinear interaction between two photons, which is extremely difficult
to achieve in practice. 
3 “Teleportation” (though it was not explicitly called that) was supposedly introduced in
this TV show because the producer, Gene Roddenberry, wished to save the expense of
simulating the landing of a starship on a planet.



from the one discussed in the previous
sections. What is needed is a coherent
superposition consisting of the state in
which two photons are in beam A
while none are in B and the state in
which no photon is in beam A while
two photons are in B. Such number-
entangled states can be made in the

laboratory, and the predictions about
fringe spacings have been verified.
However, other obstacles must be over-
come in order to surpass current classi-
cal-lithography techniques. Researchers
continue to explore the potential of this
ideawith the hope of achieving a viable
commercial technology. 

Creating and Measuring
Entangled States

If quantum state entanglement 
is such a remarkable property
because it allows one to perform
secret communications, teleport
states, or test the nonlocality of 
quantum mechanics, one naturally
wonders how to make entangled
states. Currently, scientists can create 
entangled states of particles in a 
controlled manner by using several
technologies such as ion traps, cavity
quantum electrodynamics (QED),
and optical down-conversion. Here,
we will concentrate on the optical
realization. 

Crystals of a certain chemical
structure, such as beta-barium borate
(BBO), have the property of optical
nonlinearity, which means that the
polarizability of these crystals
depends on the square (or higher
powers) of an applied electric field.
The practical upshot of this property
is that, when passing through such a
crystal, a single-parent photon can
split (or down-convert) into a pair of
daughter photons. The probability
that this event occurs is extremely
small; on average, it happens to only
one out of every 10 billion photons! 

When down-conversion does
occur, energy and momentum are
conserved (as they must be for an
isolated system). The daughter pho-
tons have lower frequencies (longer
wavelengths) than the parent photon
and emerge from the crystal on oppo-
site sides of a cone that is centered
about the direction traveled by the
parent. For what is known as Type I
phase matching, the daughters
emerge from a specifically oriented
BBO crystal with identical polariza-
tions that are aligned perpendicular
to the parent polarization—see
Figure 5(a). Because each photon is
in a definite state of polarization, the
two photons are not in an entangled
state but are classically correlated.
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(b)

Entangled
daughter
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Parent
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Crossed BBO Crystals

Figure 5. Entangled-Photon Source
(a) For a given orientation of the beta-barium borate (BBO) crystal, a horizontally

polarized parent photon produces a pair of vertically polarized daughters.

The daughters emerge on opposite sides of an imaginary cone. The cone’s axis is

parallel to the original direction taken by the parent photon. The two daughter 

photons are not in an entangled state. Reorienting the BBO crystal by 90° will 

produce a pair of horizontally polarized daughters if a vertically polarized pump

beam is used. (b) Passing a photon polarized at +45° through two crossed BBO

crystals can produce two photons in an entangled state. Because of the

Heisenberg uncertainty principle, there is no way to tell in which crystal the parent

photon “gave birth,” and so a coherent superposition of two possible outcomes

results: a pair of vertically polarized photons or a pair of horizontally polarized

photons. The photons are in the maximally entangled state |Φ+〉 = 1/√2(|HH 〉 + |VV 〉).



(The crystal acts like the source S1
described earlier.)

To create photons in the entangled
state, one can use two crystals that
are aligned with their axes of sym-
metry oriented at 90° to each other,
as shown in Figure 5(b). With
crossed crystals, two competing
processes are possible: The parent
photon can down-convert in the first
crystal to yield two vertically polar-
ized photons (|VV〉), or it can down-
convert in the second to yield two
horizontally polarized photons
(|HH〉). It is impossible to distinguish
which of these processes has
occurred. Thus, the state of the 
daughter photons is a coherent 
quantum-mechanical superposition of
the states that would arise from each
crystal alone; the crossed crystals

produce photons in the state 
|Ψout〉 = 1/√2(|ΗΗ〉 + |VV〉), which is
maximally entangled.4

Figure 6 shows how this basic
source can be adapted to produce any
pure quantum state of two photons by
placing rotatable half- and quarter-
wave plates (which can be used to
transform the polarization state of a
single photon) before the crystal and in
the paths of the two daughter photons.
To create more general quantum

states—mixed states—a long birefrin-
gent crystal can be used to delay one
polarization component with respect to
the other. If the relative delay is longer
than the coherence time of the photons,
the horizontal and vertical components
have been effectively decohered; that
is, the phase relationship between the
different states is destroyed.
Researchers are still discovering how
to combine sources and polarization-
transforming elements to create all
possible two-photon quantum states.

Characterizing Entanglement:
The Map of Hilbert Space

As discussed in the box on page 56,
a mixed state of two photons  (or in
general, a mixed state of two qubits)

PBS
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Beam stop

Prism

Ar
+
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State Selector Tomographic Analyzer Detectors

Filter Lens
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Figure 6. Creating and Measuring Two-Photon Entangled States 
(a) The “parent” photons are created in an argon ion laser and are linearly polarized
with a polarizing beam splitter (PBS). The half-wave plate (HWP) rotates the polar-
ization state before the photon enters the entangled-photon source. The entangled
photons produced diverge as they exit. Each photon’s polarization state can be
altered at will by the subsequent HWP and quarter-wave plate (QWP). The decoher-
ers following the state selection allow us to produce (partially) mixed photon states.
The optical elements (QWP, HWP, and PBS) in the tomographic analyzer allow us to
measure each photon in an arbitrary basis, for example in H/V or +45/–45.
Combining the measurements on both photons allows us to determine the quantum
state. (b) In the photo, Paul Kwiat is shown with the two-photon entangled source 
at Los Alamos.

4 In an alternative approach known as
“Type II phase matching,” only one crys-
tal is needed to create the entangled state.
The crystal has a different orientation,
and each of the daughter photons emerges
from the crystal on one of two possible
exit cones. Entangled photons created by
this approach were used in the first
demonstration of quantum teleportation. 

(a)

(b)



is represented by a 4 × 4 density
matrix, which is described by 15 inde-
pendent parameters (15 real numbers).
To determine the independent parame-
ters, we make 15 coincidence 
measurements on the ensemble of
photon pairs emitted from the source.
Each measurement is similar to the
one used in the simple experiment
described at the start of this article.
The measurement may be made with
the tomographic analyzer shown in
Figure 6. Using such a system, we
were able to determine the density
matrices of many types of states. 
An example is shown in Figure 7. 

Whereas 15 numbers fully describe
a two-photon mixed state, the density
matrix for N photons needs 4N – 1  
real numbers. Thus, the density 
matrix of a 4-photon state contains

255 parameters and requires 255 sepa-
rate measurements just to characterize
the state. Note that, if each parameter
is allowed to assume one of, say,
10 possible values, those 4 photons can
be in any of 10255 distinct quantum
states! This number of states is many
orders of magnitude greater than the
total number of particles in our 
universe. The mathematical space 
in which the quantum states rest 
(the Hilbert space) is unfathomably
large, and in order to have any hope 
of navigating it, one needs to introduce 
a simpler representation for quantum
states. 

Two characteristics of central
importance for quantum information
processing are the extent of 
entanglement and the degree of 
purity of an arbitrary state. A quantity

called the von Neumann entropy 
has been introduced to characterize 
the degree of puritya. (See the box
“Characterizing Mixed States” on 
the next page.) However, for the 
analysis of two-photon states,
we found it easier to use a related
quantity, known as the linear entropy.
When the linear entropy equals zero,
the state is pure. When it reaches 
its maximum value of 1, the state is
completely random. 

Measuring the entanglement of a
mixed state is more complicated and,
in general, is an unsolved research
problem when more than two qubits
are involved. Any mixed quantum state
can be thought of as an incoherent
combination of pure states: The system
is in a number of possible pure states,
each of which has some probability
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Figure 7. Density Matrices
Theoretical and experimental density
matrices for the entangled state
|Φ+〉 = 1/√2 (|HH〉 + |VV〉) are illustrated
here. Both real and imaginary parts of
the matrix are shown. The value of each
matrix element is derived from the
results of thousands of two-photon 
correlation experiments (simulated
experiments for the theoretical matrix.)
The experimental matrix indicates that
our source can output a state close to a
maximally entangled one. Written out
“longhand,” the density matrix describ-
ing the state |Φ+〉 is

ρ = |Φ+〉〈Φ+|
= 1/2( |HH〉〈HH| + |VV〉〈VV|

+ |HH〉〈VV| + |VV〉〈HH| )  .

The first two terms, which lie on the
diagonal of the matrix (dashed line),
give the probability of the result (for
example, 50% HH and 50% VV). The
other two terms describe the quantum
coherence between the states |HH〉 and
|VV〉. For a classical mixed state (such
as the source S2 described in the text),
these off-diagonal terms in the density
matrix would equal zero. Notice that all
coefficients in this density matrix are
real, so that all terms in the imaginary 
part of the matrix should be zero.



between 0 and 1 associated with it
(rather than the complex numbers
defining the probability amplitudes
that specify a particular superposition
of pure states). A reasonable measure
of the entanglement of such a mixed
state is to take the average value of
the entanglement (for example, as
measured by the concurrence dis-
cussed in the box on this page) for all
those pure states. 

One must, however, use this proce-
dure carefully because the decomposi-
tion of the mixed state into an 
incoherent sum of pure states is not
unique. For this “average entangle-
ment” to make any sense as a measure
of entanglement of the mixed state,
one must use the decomposition for
which the average is a minimum. 
The square of this minimized quantity
is called the “tangle.” It has a value 
of zero for entirely unentangled,
separable states and of unity for com-
pletely entangled states. 

Figure 8 shows how those two
parameters—tangle and linear
entropy—can be used to create a
simplified map of Hilbert space for
two-photon states. The crosses 
(with error bars) are the states we
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Characterizing Mixed States

It is convenient to characterize the extent of entanglement and the degree
of purity of a mixed state using two derived parameters: the tangle and the
linear entropy. The linear entropy, which gives a measure of the purity of
the state, derives from the von Neumann entropy. The latter is given by the
formula S = –Tr{ρlog2(ρ)}, where ρ is the density matrix. Here Tr{M} is
the trace of a matrix (that is, the sum of terms on the diagonal) and log2 is
a logarithm base 2, which can be defined for matrices via a power series.
The von Neumann entropy is zero for a pure state. When the von Neumann
entropy has its maximum value (equal to the number of qubits), the state is
completely random, with no information or entanglement being present.
The linear entropy, defined for two qubits as SL = 4/3(1 – Tr{ρ2}), is simi-
lar to the von Neumann entropy, but it is easier to calculate. Specifically, it
equals 0 for a pure state and has a maximum value of 1 for completely 
random states. 

Characterizing the degree of entanglement is more difficult. Mathematically
speaking, if one decomposes the density matrix into an incoherent sum of 
pure states, that is, ρ = Σi pi |ψi〉 〈ψi|, where 0 ≤ pi ≤ 1 and ∑i pi = 1,
then the average entanglement is E

–
= ∑i piC(ψi) = 1, where C(ψi) is the

concurrence of the pure state |ψi〉 (defined in the box on page 56). It is very
important to find the decomposition for which E

–
takes its minimum possible

value; otherwise, one can infer a nonzero entanglement for states such as the
completely mixed state, which is certainly not entangled! Fortunately, the way
to do that decomposition has been worked out for two qubits. Characterizing
the degree of entanglement for three or more qubits remains an unsolved
research problem.
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Forbidden region
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(Bell states)

Figure 8. The Map of Hilbert Space 
The amount of entanglement (or the
tangle) is plotted against the degree 
of purity (represented by the linear
entropy) for a multitude of two-photon
states created and measured at 
Los Alamos. Each state is represented
by a black spot with error bars.
The boundary line, which represents
the class of states that have the maxi-
mum possible entanglement for a given
value of the linear entropy, was first
determined theoretically but then 
confirmed by a numerical simulation 
of two million random density matrices.
Important states, such as those that are
maximally entangled or completely
mixed, are indicated. Efforts are under
way to create states that lie along 
the boundary line.



have created and measured experi-
mentally. Most display a high degree
of entanglement. States created by
other technologies can be plotted on
such a diagram as well. 

Conclusions

Entangled states arise naturally
whenever two or more quantum 
systems interact. In fact, one of the
prevalent theories of nature is that 
the universe is really one big, vastly
complicated entangled state, described
by the “wave function of the uni-
verse.” Despite their seeming ubiquity,
however, entangled states are not gen-
erally observed in the world at large.
Only relatively recently have scientists
developed the means to controllably
produce, manipulate, and detect this
most bizarre quantum phenomenon.
Initially, the fascination was limited to
experimental studies of the foundations
of quantum mechanics, especially the
notion of nonlocal “spooklike” influ-
ences (to quote Einstein). However,
even more recently, has come the real-
ization that entanglement could lead to
enhanced—sometimes vastly
enhanced—capabilities in the realm of
information processing.

This paper has discussed how
entangled states could be a key
resource in applications as diverse 
as cryptography, lithography, and
metrology because they enable feats
beyond those possible with classical
physics. In addition, the quest to 
create a quantum computer has
pushed entangled systems to the fore-
front of quantum research. Part of the
power of a quantum computer is that
it creates entangled states of N qubits
so that information can be stored and
processed in the 2N-dimensional qubit
space. Quantum algorithms have been 
developed that would manipulate 
the complex entangled state and make
use of the nonclassical correlations to
solve problems more efficiently than

could be done classically. Scientists
who work on developing quantum
computers are envisioning systems of
thousands of entangled qubits. 

We don’t know whether we will be
able to create or maintain such a com-
plex entangled state. At this point,
we won’t even claim to know whether 
we will fully understand that state if 
it is created. More research is needed
before those questions can be
answered. All that we can say now 
is that the once-hidden domain of
quantum entanglement has broken
into our classical world. �
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The battle between cryptographers, who encrypt messages,
and cryptanalysts, who break those codes, has raged for centuries.
As quantum computing promises to help cryptanalysts break many
of the encryption methods used today, quantum cryptography
promises to keep our secrets safe forever.



A New Face for Cryptography
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Cryptography, the mathematical science 
of secret communications, has had a long
and distinguished history dating back to 

the time of the ancient Greeks. It is a subject noted
for the never-ending struggle for one-upmanship
between code makers and code breakers, a struggle
in which the future of nations has literally been 
at stake. The code breakers’ need to read another
party’s secret communications has been a 
tremendous force driving the development of new
information-processing technologies. The code 
makers have responded by using those new 
technologies to develop more complex methods 
for ensuring the security of communications. 

The latest round in this struggle seems set to be
played out in the world’s physics laboratories, with
the combatants drawing upon fundamental princi-
ples of quantum physics, principles that were only
of academic interest until about 15 years ago. 
The code breakers believe that a large-scale quan-
tum computer—a device that uses the nonclassical
aspects of quantum systems to manipulate 
information—could defeat the most widespread
cryptosystems in use today. They are pushing 
the physics community to develop such a computer,

which necessarily involves controlling atoms and
photons in ways that were barely dreamed of—until
recently. Meanwhile, the code makers are ready for
battle and are already exploiting quantum mechanics
in a new code-making technology—quantum key 
distribution (QKD)—that could counter the quantum
computing threat. 

Classical Cryptography

The main goal of cryptography is to allow 
two parties (conventionally referred to as “Alice”
and “Bob”) to communicate while simultaneously
preventing a third party (“Eve”) from understanding
those communications. Alice and Bob’s messages
should remain secret even when Eve is able to 
passively monitor the exchanges. (A more intrusive
Eve might want to prevent Alice and Bob from 
communicating at all, but such a denial-of-service
attack is a different type of communication problem
that we will not consider here.) Cryptography 
provides Alice with the means to render her 
messages to Bob in a form that is indistinguishable
from random noise but that, nevertheless, allows
Bob to recover the original message.



This process of encryption (by
Alice) and decryption (by Bob) can be
accomplished if the two parties share
a string of randomly generated binary
bits known as a cryptographic key. In
a system called the “one-time pad,”
Alice and Bob must have identical
copies of the key. (How they get the
key will be discussed later). As seen
in Figure 1, Alice adds the key to her
message, bit by bit, using the binary
exclusive OR- (XOR-, ⊕) operation,
which is is equivalent to addition
modulo 2. Mathematically, the XOR
operation is defined as 

0 ⊕ 0 = 0  ,
0 ⊕ 1 = 1  ,
1 ⊕ 0 = 1  , and
1 ⊕ 1 = 0  . (1)

Alice’s encrypted communication at
this point is indistinguishable from

random noise. Alice sends this mes-
sage to Bob, who takes his copy of
the key and subtracts it from the mes-
sage, again using an XOR-operation.
The original script is recovered.
Provided a key is used to encipher
only one message, the one-time pad
encryption process is provably secure.
In fact, it is the only completely
secure cryptographic system. 

The one-time pad is an example of
a symmetric-key system (symmetric
because Alice and Bob have the same
key), and it requires a key that is as
long as the message. In another type
of symmetric key system, Alice and
Bob use a short key to seed a high-
quality random number generator of
which they have identical copies.
They then need to share fewer initial
key bits in order to encrypt and
decrypt large messages. In the Data
Encryption Standard (DES)—a sym-

metric-key algorithm that was adopted
as a United States government stan-
dard in 1977—the key length is
56 bits. 

The security of all symmetric-key
cryptographic systems rests entirely
on the secrecy of the shared key
because the structure of the crypto-
graphic algorithm used by Alice and
Bob is public knowledge. Certainly,
the eavesdropper Eve understands and
can implement the decryption algo-
rithm. Should Eve obtain the key, she
could immediately read Alice and
Bob’s messages. Without the key, Eve
must attempt a mathematical attack
on the encrypted message (or parts
thereof) in order to crack it. In a
properly designed symmetric-key
cryptosystem, no attack should be
more efficient than an exhaustive
search over all possible keys. 

Consider, for example, the 56-bit
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Alice's message
�

Key

Encrypted message

 1001  0000  0110  1001
 
 1000  0100  0101  0001 

 0001  0100  0011  1000

Alice

Bob

XOR operation, � :   

0 � 0 = 0 :  0 � 1 = 1  :  1 � 0 = 1  :  1 � 1 = 0

(a) Encryption, One-Time Pad

(b) Decryption

Encrypted message
�

Key

Original message

 0001  0100  0011  1000
 
 1000  0100  0101  0001 

 1001  0000  0110  1001

Classical communication
channel

Figure 1. A Symmetric-Key
Cryptography System: The One-
Time Pad
(a) Alice, the sender, first generates a
string of binary bits (the key) that is as
long as her binary message. Then she
applies the XOR operation—bit by bit—to
the key and her message, and sends the
encrypted string to Bob over an open
communications channel. (b) Bob, the
receiver, uses the same key as Alice to
decrypt the message by the same XOR
operation, applied bit by bit. His
decrypted message is identical to the
original message sent by Alice. Because
the value of each key bit is random, the
message cannot be recovered without
the key. As long as Alice and Bob use
the key only once to encrypt and decrypt
one message, this one-time pad system
is absolutely secure, but distributing 
the secret keys remains a problem.
(c)–(e) This series of photographs 
shows an aerial view of the St. Louis
International Airport before encryption,
as encrypted by Alice, and as decrypted
by Bob. Whereas Alice’s encrypted 
photo is indistinguishable from random
noise, Bob is able to reproduce the 
original faithfully.

(c) Original (d) Encrypted (e) Recovered Original



DES key. Because there is a choice of
either 0 or 1 for every bit in a binary
key, there are 256 (or nearly 1018) 
possible DES keys. A desktop com-
puter testing a million keys a second
would require more than two thousand
years to search the entire key space.
But the phenomenal increase in 
computational speed and capability
has made the 56-bit key vulnerable.
Today’s supercomputers can search all
possible keys in a matter of hours. 

The simple solution is to use
longer keys. Adding a bit to the key
length doubles the search time,
whereas doubling the key length
makes the search problem exponen-
tially harder. In the forthcoming
Advanced Encryption Standard
(AES), the key length will be up to
256 bits, in which case a search of 
the entire key space would be so com-
putationally demanding that it would
not be feasible on any computer 
system within the useful lifetime of
the information. 

The Key Distribution Problem.
A DES-type cryptographic system
reduces the act of communicating a
long secret (the message) to that of
creating and sending a short secret
(the key). But the central issue within
any system is that any information
about the key must remain out of the
hands of unwanted parties. This latter
requirement creates what is known as
the key-distribution problem. 

Traditionally, cryptographic keys
were distributed by trusted couriers
immortalized in spy movies as
strangers in trench coats handcuffed to
locked briefcases. But the infrastruc-
ture required to manage the key mate-
rial makes this type of distribution
impractical in our computer-driven,
global community. Picture the logis-
tics nightmare if a courier had to
deliver a cryptographic key every time
Alice wanted to use her credit card
over the Internet—and imagine the
added cost! In some cases, courier key

distribution is even impossible, such
as when Bob is not a person but a
satellite in Earth’s orbit. Furthermore,
the existence of the key material
before delivery by courier introduces
an insider threat, in that the key 
material could be copied and delivered
surreptitiously to Eve. 

About 30 years ago, researchers at
Britain’s Government Communications
Headquarters (GCHQ), and later (inde-
pendently) in the United States, found
a new, more convenient way to
securely distribute cryptographic keys.
The system is known generically as
public-key cryptography. One public-
key protocol begins when Bob gener-
ates two very large prime numbers, p
and q, which are multiplied to form the
especially large number N. He then
selects an integer g, and uses the num-
bers p, q, and g to generate a fourth
number, d. The two numbers (N, g)
constitute Bob’s public key, which he
makes widely available. The number d
constitutes Bob’s private key, which he
keeps secret. (The protocol is dis-
cussed in greater detail in the box
“Public-Key Cryptography: RSA” on
the next page.) 

When Alice wants to send an
encrypted message to Bob, she grabs a
copy of his public key and uses it in 
an algorithm that mathematically
scrambles her communication. The
algorithm, however, is a clever one-
way operation: Bob’s public key (N, g)
cannot be used to unscramble Alice’s
encrypted message. Instead, one needs
the secret number d from Bob’s private
key to decrypt. Given only N, it is
extremely difficult to find the prime
factors p and q that are needed to 
generate d; hence, the system is 
considered secure. 

Because the public-key cryptogra-
phy system is asymmetric—only Bob
needs to have a secret key—it has
become the enabling technology for
electronic commerce. Alice can grab
the public key from the Bob.com 
website and safely encrypt and send

her credit card number. In addition,
public-key encryption also provides a
means for Alice to authenticate her
transaction. 

But public-key cryptography has
its downside. Because of the computa-
tional difficulty in calculating asym-
metric keys, Alice and Bob use it only
to produce and distribute a symmetric
key that they then use for the bulk of
their discussions. More disturbing is
the lack of proof that the methodology
is secure. A clever person could come
up with a new factoring algorithm that
allows finding the secret number d,
thus making public-key cryptography
obsolete. 

In 1994, Peter Shor of AT&T did
invent such an algorithm. If imple-
mented, that algorithm would under-
mine the public-key cryptography in
use today. Fortunately, Shor’s algo-
rithm must be run on a quantum com-
puter, which is currently unavailable
and will probably remain so for many
years. 

Public-key cryptography clearly
has a place where security need not be
guaranteed to last for years. Because
it is not provably secure, however, and
because a quantum computer may
render it useless in the future, a better
system is needed for highly valuable
data such as government or trade
secrets. That better system is quantum
cryptography.

Quantum Cryptography

Quantum cryptography is a type of
symmetric-key distribution that
allows Alice and Bob to create and
share a secret key, while Eve is pre-
vented from obtaining any more than
a tiny fraction of one bit of informa-
tion about the final key’s binary
sequence. The secret key can actually
be used in any symmetric encryption
method desired. Because quantum
cryptography is used to send these
key bits, it is more correctly called
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quantum key distribution (QKD).
Adding to the security of a QKD 
system is the fact that any attempt to
steal or copy a key can be detected,
thus revealing information about the
security environment. 

The quantum part of quantum
cryptography comes from the trans-
mission and reception of single 
photons. In addition to keeping 
an eavesdropper at bay (primarily

because a photon cannot be split 
or copied reliably), quantum 
cryptographic systems exhibit strange
quantum mechanical behaviors that
are not normally observed in the
classical world of everyday 
experience. The best example of 
such behavior occurs in our fiber-
based quantum cryptographic system,
in which we use the interference of 
single photons with themselves 

to transmit information. 
Before describing how a photon

interfering with itself helps us
encrypt messages, we will present 
an overview of the steps involved 
in executing a secure exchange of
messages and then describe a simple
protocol. Protocols are the rules used
for the quantum mechanical and 
conventional transmissions at 
the heart of QKD. 
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Public-Key Cryptography: RSA 

Public-key cryptography is an asymmetric key-distribution
system, wherein Bob generates two keys: a public key,
which he makes available to anyone, and a private key,
which he keeps secret. Alice uses the public key to encrypt
her message, which she then sends to Bob, who uses 
his private key to decrypt that message. Perhaps the most
widely used public-key cryptography algorithm is RSA,
which was invented in 1978 by Ron Rivest, Adi Shamir,
and Leonard Adleman and was named for its inventors.
The RSA algorithm uses two keys that are constructed 
as follows:

• Bob generates two prime numbers, p and q,
which are typically very large (several hundred 
bits in length). 

• He calculates the product, N = pq, known as the 
modulus. 

• He calculates Euler’s quotient function Φ(N),
which is simply the number of integers less than 
N that are coprime* to N. If p is a prime number,
every number less than p is coprime to it, so 
Φ(p) = p – 1. Since the modulus N = pq is the 
product of prime numbers, Φ(N) = (p – 1)(q – 1).
Let Φ(N) be designated by η. 

• Bob chooses an integer g such that g < N, and g
has no factors in common with η. 

• Bob calculates d = gΦ(η)–1 mod η, where mod η
is the modulus operation.†

Bob’s public key is (N, g). His private key is the number d.

* Two integers are coprime if they share no common divisors except 1.
† For an introduction to modular arithmetic, see the article “From
Factoring to Phase Estimation” on page 38.

When Alice wants to send a message to Bob, she first 
represents her message as a series of numbers. To
encrypt, she grabs Bob’s public key (N, g) and uses it in
the following mathematical transformation:

c = mg mod N, (1)

where m is a number representing a piece of her message.
She sends the new number c off to Bob, who uses his pri-
vate key (N, d) to perform the operation 

m = cd mod N  , (2)

thereby recovering Alice’s number. 

Public-key cryptography is based on a theorem by Euler,
which states that xΦ(y) = 1 mod y, for any integer x that
is coprime to the number y. The number d was chosen
such that d = gΦ(η)–1 mod η, or dg = gΦ(η) mod η, which
by Euler’s theorem becomes dg = 1 mod η. Subtracting 1
will result in dg – 1 = 0 mod η. 

The last statement indicates that the number dg – 1 is
evenly divisible by η, so that dg – 1 = kη, where k is an
integer. In decrypting the message, Bob has

cd mod N = (mg)d mod N ,
= m (m(dg–1) mod N)  , and
= m (mkη mod N)  . (3)

But η = Φ(N). By Euler’s theorem, mΦ(N) = 1 mod N. Thus,

cd mod N = m (1)k mod N , and
= m mod N . (4)

In other words, cd mod N = m, so that the decryption
algorithm recovers Alice’s message.



A QKD Session. To perform
QKD, Alice and Bob communicate in
two different ways. The first is over a
quantum channel, which allows Alice
to reliably send single photons to Bob.
While Eve may attempt to breech the
quantum channel, her tampering can
be detected. The second means of
communication is an ordinary, public
channel assumed to be monitored by
Eve. Alice and Bob use this open
channel to construct their secret key,
implement any of several error-
correction techniques, and coordinate
a “privacy amplification” scheme that
effectively prevents Eve from gaining
any knowledge about the final key. 
In all, six steps are implemented in a
QKD session. These are summarized
in the box to the right.

As a first step, Alice and Bob
authenticate their communications;
that is, they verify each other’s 
identity. If this step is ignored, Eve
can perform a “man-in-the-middle”
attack and convince Alice that she 
is Bob, and Bob that she is Alice,
in which case no form of key 
distribution or encryption can 
prevent Eve from reading all of 
Alice and Bob’s communications. 

After authentication, Alice and
Bob begin their QKD session. First,
each generates a random bit stream.
Alice then uses a QKD protocol, such
as BB84 (discussed in the next sec-
tion), that specifies how she is to
encode each bit as the quantum state
of a single particle. For example, she
may use the specific polarization state
of a single photon to encode for
either a 0 or a 1. Then, Alice would
send a stream of polarized photons to
Bob, who follows the protocol in
determining how to measure the
polarization and hence deduce a bit
sequence. Because of the way the
protocol works, Alice and Bob can
have a public conversation and select
an overlapping subset of bits without
revealing to each other the value of
those bits. 

For example, if Alice’s random
sequence is 0111 1010 1001 and as a
result of his measurements Bob
obtains the sequence 1001 1100
0100, then the protocol provides a
means for Alice and Bob to know—
without specifically telling each
other—that the fourth, fifth, eighth,
and eleventh bits form a common
subsequence of 1100. This subse-
quence is called the “sifted” key. 

In the real world, hardware is
noisy, and transmission media are
lossy, so the sifted key will contain
some errors. Alice and Bob continue
their public conversation and create a
“reconciled” key, in which those
errors are removed. During this
process, some information about the
sifted key becomes available to any
potential listener (Eve). But Alice and
Bob can calculate the maximum
information Eve could have about
their reconciled key, and using pri-
vacy amplification, reduce Eve’s
information to substantially less than
one bit. The result is a secret key
known only to Alice and Bob. The
one remaining step before closing the

session is to save a few key bits and
thereby have a means to authenticate
the next QKD session. 

The BB84 Protocol. In 1984,
Charles Bennett and Gilles Brassard
published a paper describing how
orthogonal and nonorthogonal quan-
tum states could be used to construct
a cryptographic key. Known today as
BB84, the protocol is at the heart of
our experimentally realized QKD sys-
tems. In the free-space version, Alice
encodes random bit values in the
polarization states of photons and then
sends the single photons to Bob over
the quantum channel. Bob’s measure-
ment of the photon’s polarization and
subsequent communication with Alice
over a public channel allow the two
parties to construct a sifted key. 

A stylized version of the BB84
protocol is shown in Figure 2. (The
box “Photons, Polarizers, and
Projections” on page 76 also provides
some background material for this
section.) Alice generates a random
sequence of bits and then chooses—
also at random—between one of two
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Six Steps to a QKD Session

Authenticate. Over an open communication line, Alice confirms she is 
talking to Bob, and Bob confirms he is talking to Alice. 

Use a quantum protocol. The protocol dictates how Alice is to encode her
random bit stream as a quantum state of a single photon. Bob measures
photons according to the protocol. 

Construct the sifted key. Alice and Bob use an open line to discover which
photons were sent and measured in the same basis. The bit values associ-
ated with that subset of photons form the sifted key. 

Construct the reconciled key. Over the open line, Alice and Bob find and
remove errors from the sifted key to make the reconciled key.

Construct the secret key. Alice and Bob use privacy amplification to con-
struct a secret key from the reconciled key. An eavesdropper has essen-
tially no information about the bits in the secret key. 

Save some bits. A few secret bits are retained to enable authenticating future
QKD sessions. 
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A PBS reflects V-polarized photons 
and transmits H-polarized photons.
Photons polarized at ±45° can go
either way.

(d) Bob inserts an HWP to
choose the diagonal basis
or removes it to choose the
H/V basis

(c) Alice inserts an HWP to
choose the diagonal basis
or removes it to choose the
H/V basis

(b) Bit value selection using 
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The BB84 protocol works because Alice randomly chooses to
encode the photons in two, nonorthogonal bases. (a) An atten-
uated laser produces close to single photons. (b) Alice uses a
random number generator (RNG) to select a bit value: 0s are
encoded as horizontally polarized photons and 1s as vertically
polarized photons (c) A second RNG selects the basis. To
choose the H/V basis, Alice does nothing, (the photons are
already either |H〉 or |V〉). To choose the diagonal (–45/+45)
basis, she inserts a half-wave plate (HWP) that rotates the
polarization by –45°, so that |H〉 goes to |–45〉 and |V〉 to |+45〉.
(d) Bob uses an RNG to select his measurement basis, choos-

ing either to do nothing (H/V) or to rotate the photon by +45°
(–45/+45). He detects photons using an H/V oriented polarizing
beam splitter (PBS), which transmits horizontally polarized
photons but reflects vertically polarized ones (see inset).
Photons polarized at ±45° have an equal probability to go to
either detector. Table I shows that, when Alice and Bob choose
the same basis, they know that their bit values coincide. When
they choose different bases, their bit values are randomly 
correlated. At the end of the session, Bob and Alice openly
compare their bases for each measurement. They keep only
those bits that were sent and measured in the same basis.

Diag.

Table I. Details of the BB84 Protocol

Sender (Alice) Receiver (Bob) Joint Action

Probability (%)
Alice's
Basis Bit Polarization

Bob’s
Basis

Resulting
Polarization H-Det. V-Det. Bit

H/V 0 H H/V H 100 0 0 Keep bit

H/V 1 V H/V V 0 100 1 Keep bit

H/V 0 H Diag. +45° 50 50 0 or 1 Discard bit

H/V 1 V Diag. –45° 50 50 0 or 1 Discard bit

Diag. 0 –45° H/V –45° 50 50 0 or 1 Discard bit

Diag. 1 +45° H/V +45° 50 50 0 or 1 Discard bit

Diag. 0 –45° H 100 0 0 Keep bit

Diag. 1 +45° Diag. V 0 100 1 Keep bit

Figure 2. The BB84 Protocol



polarization bases, either the horizon-
tal/vertical (H/V) basis, or the diagonal
(–45°/+45°) basis. If she chooses 
the H/V basis, the bit values of 0 are
encoded as horizontally polarized pho-
tons, and bit values of 1 are encoded
as vertically polarized photons, that is,
0 = |H〉 and 1 = |V〉. Similarly, if she
chooses the diagonal basis, 0 and 1 bit 
values are encoded as 0 = |–45〉 and 
1 = |+45〉. She sends the stream of
polarized photons off to Bob. 

At his end, Bob chooses at random
to measure polarizations in either 
the H/V or diagonal basis. As shown
in Figure 2, he uses a special 
dual-detector system. If he chooses
the H/V basis, then photons in the
state |H〉 go through to his H-detector,
while those in the state |V〉 are
reflected to the V-detector. Photons in
the |–45〉 or |+45〉 state go randomly to
either detector. If Bob measures in the
diagonal basis, then his setup directs
|–45〉 photons to the H-detector, |+45〉
photons to the V-detector, and |H〉 or
|V〉 photons to either detector with
equal probability. 

Table I shows how the results dif-
fer depending on which polarization
states were sent and how they were
detected. When Alice and Bob used
the same basis, a photon hit on Bob’s
H-detector means that Alice had a bit
value of 0; a hit on his V-detector, that
she had a bit value of 1. If the bases
differ, there is no such correspon-
dence. Bob and Alice therefore use
the public channel and simply com-
pare the sequence of bases. They keep
the corresponding bits when the bases
agree and disregard the bits when they
don’t agree. In this way, they can
build a sifted-key sequence over a
public channel without ever revealing
the value of the individual key bits. 

Because Alice and Bob have a 
50 percent chance of choosing the
same basis, in an ideal implementa-
tion of BB84, half of the photons are
used to create the sifted key. In prac-
tice, the efficiency is much less

because the real world unavoidably
introduces errors into the sifted-key
sequence—polarizers are not perfect,
photons do not always reach Bob,
and detectors do not always fire
when hit with a photon and some-
times fire on their own. Alice and
Bob must check and correct their
sequence for errors.

Error Correction. One example of
a simple error-correction scheme is
illustrated in Figure 3. Alice tells Bob
the parity of each of her bytes, that is,
whether the sum of each 8 bits of the
sifted key is even or odd. Bob then
checks the parity of his bytes. They
keep those bytes that have the same
parity and initiate a 20-questions-type
deductive process to find the problem
bit when the parity differs.1 Because
parity checks can only find an odd
number of errors in a bit sequence, in
practice, sifted bits are shuffled and
then checked for errors several times.
All errors must be eliminated to a
high degree of certainty. If Alice and
Bob’s keys differ by even a single bit,
the keys will be unusable. 

Alice and Bob make their byte
comparisons over the open channel,
so Eve now has—at a minimum—
information about the parity of each
retained byte. To eliminate even this
limited knowledge on Eve’s part,
Alice and Bob can agree to drop the
last bit of each byte. In addition, they
have to sacrifice some key bits to find
the errors in their sequences. The 
reconciled key is therefore shorter
than the sifted key. While undertaking
the error correction process, however,
Alice and Bob obtain an estimate of
the bit error rate (BER), which is 
the number of errors they had in their
sifted sequences. Alice and Bob use
the BER and knowledge of the quan-
tum mechanical and physical princi-
ples of the QKD technique to put a
rigorous upper bound on the possible
information that Eve may have about
their bit sequences. 

Privacy Amplification. In this
step, Alice and Bob do an XOR oper-
ation on sequences of bits from the
reconciled key to produce fewer, but
brand new, bits. The amount of com-
pression required depends on their
estimate of Eve’s acquired knowledge. 

For example, suppose Alice and
Bob share a reconciled sequence con-
sisting of six bits, a, b, c, d, e, and f,
and they suspect that Eve knows three
of the six bits. Alice and Bob make
two new bits out of the original six by
doing the following operation:

a ⊕ b ⊕ c ⊕ d = Bit 1  , and
c ⊕ d ⊕ e ⊕ f  = Bit 2  . (2)

Although Eve may have known
three bits of the reconciled key
sequence, she knows nothing about
the new bits generated by privacy
application. Alice and Bob can apply
this procedure to reduce Eve’s knowl-
edge to less than one bit in a key that
is several hundred bits long and
thereby produce a completely secure
key. In general, if the original
sequence is n-bits long, privacy ampli-
fication will compress it to R(n) bits,
where 

R(n) = – n log2[ζ2 + (1 – ζ)2]  (3) 

and ζ is the BER. 

Foiling Eve. We are now in a 
better position to discuss how the
complete QKD session prevents Eve
from gaining information about the
secret key. First, Eve cannot get any
information about the key over the
open channel; although the BB84 pro-
tocol allows her to know which bits
Alice and Bob had in common, she
knows nothing about the values 
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1 Bits that get transmitted correctly are
valuable. Although Alice and Bob could
drop all eight bits of a problem byte, it is
usually worthwhile to winnow through the
byte and retain as many bits as possible.
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Our realization of the BB84 protocol uses the polarization state of individual
photons to encode bit values. But the key feature that prevents an eavesdrop-
per from detecting the polarizations without being noticed is the use of two
nonorthogonal linear polarizations to represent 0 and 1. Rather than preparing
a random sequence of horizontally or vertically polarized photons in the
quantum states H〉 or |V〉, respectively, Alice (the sender) polarizes photons
in the quantum states H〉 or –45〉 when she wants to send a 0 to Bob (the
receiver) and V〉 or +45〉 when she wants to send a 1.

We can do a simple experiment to demonstrate the quantum mechanical prop-
erties of nonorthogonal photons. We need just 3 sheets of linearly polarizing
filters, which are readily available from scientific education kits or suppliers.
The filter is made from a material that has an intrinsic transmission axis for
photons (the polarization axis). As shown in Figure A, if randomly polarized
light (for example, sunlight), made up of a large number of photons goes
through a linear polarizer with its axis aligned, say, horizontally, the photons
that emerge are polarized in the stateH〉.

We perform our experiment by orienting the first polarizer filter horizontally
and holding it up to sunlight. The light intensity decreases by about 50 per-
cent, which indicates that about half the photons get through. We then place a
second polarizer behind the first and rotate it until no light passes. At that
point, the polarization axes of the two filters are orthogonal to each other, that
is, the polarization axis of the second polarizer is in the vertical direction. If
we place the third filter between the first two with its polarization axis at
–45˚ to the others, we naïvely expect no change in the light transmission, but
suddenly one eighth of the sunlight gets through the stack, even though the
axes of the outer two polarizers are still perpendicular. 

These spooky results are a direct consequence of the quantum properties of
single photons. A linearly polarized photon is described by a quantum
mechanical wave function. Mathematically, it is represented by a “ket” ψ〉,
which is analogous to an ordinary unit vector in 2-dimensions. Just as a plane
vector can be written in terms of two orthogonal plane vectors, we can express
ψ〉 as a superposition of two orthogonal kets, φ〉 andφ+90〉, in a two-dimen-
sional Hilbert space, with real (as opposed to complex) coefficients. The ket
φ〉 represents a photon linearly polarized at the angle φ to the horizontal,
while φ+90〉 represents a photon polarized at the angle (φ + 90°). The orthog-
onal kets are a basis for the Hilbert space. We have

ψ〉 = cosθ φ〉 + sinθ φ+90〉  , (1)

where θ is the angle between φ〉 andψ〉.  The coefficients in front of the 
kets —cosθ and sinθ—are probability amplitudes. Nature has dictated that the
outcome of a measurement of the photon’s polarization state (for example, by
transmission through a polarizing filter)  is indeterminate—it depends on the
basis (the orientation of the polarization axis) used to make the measurement.
The probability p that a measurement of |ψ〉 yields the result |φ〉 is given by
the expression

p = cos2θ , (2)

that is, p is the square of the probability amplitude in front of the ket |φ〉.

Photons, Polarizers, and Projection

θθ
θθ

θθ θθ

H 〉

H 〉 = cos  –45〉 + sin  +45〉
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arbitrary
polarization

Horizontally
polarized
photons

Figure A. Polarizing Filter 
The filter projects photons into polariza-
tion states parallel to its polarization
axis.

Figure B. Decomposition into
Diagonal Basis
A horizontally polarized photon is
expressed in terms of the +45/–45 basis.



Number 27  2002  Los Alamos Science  77

A New Face for Cryptography

We are now in a position to understand the simple experiment discussed earlier.
The polarization axis of the first polarizing filter is set to be horizontal. 
Equation (1) tells us we can express an incoming photon as a superposition of a
ket that is aligned parallel the polarization axis, that is, φ = 0° andφ〉 =0〉 ≡H〉,
and a ket that is orthogonal to the axis, that is, φ+90〉 = 90〉 ≡V〉. We have

ψ〉 = cosθ H〉 + sinθ V〉 , (3)

where the angle θ is now seen to describe the angle between the incoming pho-
ton’s polarization and the filter’s polarization axis. According to Equation (2),
the probability that a linearly polarized photon passes through the horizontal
polarizer is p = cos2θ, that is, the square of the probability amplitude for the
stateH〉. Because photons of all polarizations impinge on the first 
filter, the amount of light that gets through found by taking the average of p over
all angles, that is, (cos2θ) = 1/2. Half the light makes it through the first filter. 

Every photon that makes it through has been projected into the state H〉. These
photons then interact with the second filter in the stack with polarization axis
aligned at φ = –45°. We express the horizontal photon in the 
diagonal (–45°/+45°) basis as (see Figure B):

H〉 =  cos(45)–45〉 + sin(45)+45〉 = 1/√2  (–45〉 + +45〉)  . (4)

The probability that a photon passes through the second filter is 
cos2(45) = 1/2, so 1/4 of the sunlight makes it through the two filters. The pho-
tons that emerge are polarized at –45°. The third filter is aligned vertically 
(φ = 90°), so we rewrite the ket –45〉 in the horizontal/vertical (H/V) basis:

–45〉 = cos(–135)V〉 + sin(–135)–H〉 = 1/√2 (–V 〉 + H〉)  .  (5)

The probability that a photon passes through the vertical filter is 
cos2(–135) = 1/2. Again, half the photons make it through the last filter, so in
total one eighth of the sunlight makes it through the stack.

This demonstration of nonorthogonal photon polarizations and polarizers reveals
another important property of photons: All information about the initial polariza-
tion state is lost as a result of the photon-polarizer interaction. For cryptography,
that has an unfortunate implication for someone (Eve) who is trying intercept the
encrypted bit stream. Eve can intercept the photons going to Bob, but unless she
measures the polarization of those photons in the correct basis, she cannot corre-
late the results of her measurements with a bit value. With her polarizer set to
–45°, she has a probability to detect photons in the state –45〉, |H 〉, or V 〉, cor-
responding to bit values of 0, 0, and 1. Her measurement does not reveal Alice’s
bit value, nor does it reveal the original polarization state of the photon. A cer-
tain fraction of the photons she sends to Bob (which she must do to cover her
tracks) will be in error. Thus, by choosing to send a random sequence of
nonorthogonally polarized photons, Alice and Bob assure that Eve cannot
attempt to measure the sequence without introducing detectable errors in their
QKD protocol. 

of those bits. If Eve is to get bit infor-
mation, she is forced to breech the 
quantum channel by intercepting the
photons and measuring their polariza-
tions. She must then send new 
photons on to Bob in order to cover
her tracks. 

But Eve must know the exact state
of a photon if she is to send a new
one correctly. She cannot, however,
make a deterministic measurement of
the photon’s polarization state
because Alice sends photons in two
nonorthogonal bases. For example,
suppose Eve has a detection apparatus
identical to Bob’s and she detects a
photon in her first detector (bit value
of 0) when she measures in the diago-
nal basis. Did Alice send a photon in
the |H〉, |V〉, or |+45〉 state? Eve has no
idea because, given her measurement
basis, she can detect each of those
states. A hit on Eve’s detector does
not reveal whether Alice sent a 0 or 
a 1; that information “materializes”
only after Alice and Bob compare
bases. In fact, Eve can choose any
type of detection system or measure-
ment strategy and still be uncertain
about the original state of Alice’s
photon. 

One might ask whether Eve can
make copies of Alice’s photon before
making a measurement. Then she
could send the original off to Bob,
save her string of photons (somehow),
and make deterministic polarization
measurements after listening to Alice
and Bob compare bases. But quantum
mechanics prevents Eve from accu-
rately copying an unknown photon.
(See the box “The No-Cloning
Theorem” on page 79.) She would
have to make a deterministic meas-
urement, but that action would
inevitably reveal her presence to 
Alice and Bob. 

If she were to guess the polariza-
tion state, Eve would have, at best, a
50 percent chance of forwarding the
correct one to Bob. But in making her
guess, she will necessarily introduce
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errors into Alice and Bob’s sifted-key
sequence and, hence, increase 
the BER. When Alice and Bob 
check their sifted-key sequences for
mismatches, they conservatively
assume that Eve caused all the errors.
They make corrections to those
sequences, compute the maximum
information Eve could have about the
reconciled key, and then use privacy
amplification to compress out Eve’s
possible knowledge about their
shared secret strings to substantially

less than one bit. The secret key is
truly secret. 

Experiments

To date, the three major experi-
ments performed at Los Alamos
National Laboratory are free-space,
fiber, and entangled-state QKD sys-
tems. All of the systems were con-
structed from readily available pieces
of equipment, and we were able to

show that a complete QKD session
could be communicated over long dis-
tances and still produce a useful
secret-bit yield. All three systems use
the BB84 protocol.

Here, we describe the free-space
and fiber-based experiments. 
Entangled -state QKD is described 
on page 58 in the article “Quantum 
State Entanglement."

Free-Space QKD. In free-space
QKD, photons are transmitted through

I disagree with the parity on the last byte.
Here is the parity for its first 4 bits:

0

The 3rd byte looks like this:
First 4 bits ? �? �? �? = 0

Second 4 bits:
First 2 bits: ? �? = 1

Second 2 bits: ? �? = ?

OK, they have 3 bytes each
with these parities:

? �? �? �? �? �? �? �? = 1
? �? �? �? �? �? �? �? = 0
? �? �? �? �? �? �? �? = ?

That’s the same parity I have for those bits,
so the error must be in the last 2 bits. 
Let’s drop them and the last bit of each
sequence for which we revealed parity.

I have the same parity for those bits,
so the error must be in the second 4 bits.

Here is the parity for the first 2 bits:
1

I have three 8-bit bytes
with these parities:

100

Alice’s Sifted Bits (3 bytes)
10110101  01011010  01101001

Alice’s corrected sequence
1011010  0101101 0111

Bob’s corrected sequence
1011010  0101101 0111

Eve’s knowledge
1st: ? �? �? �? �? �? �? = ?
2nd: ? �? �? �? �? �? �? = ?
3rd: ? �? �? �? = ?

Bob’s Sifted Bits (3 bytes)
10110101  01011010  01101011

Eve’s Knowledge
???????? ???????? ????????

OK

Figure 3. A Simple Error-Correction Scheme
Error correction removes single-bit errors from the sifted key. A simple scheme involves checking the parity of each byte (8-bit)
sequence. The parity of a byte is 0 if the number of 1s in the byte is even or 1 if the number of 1s in the byte is odd. In this case,
Alice and Bob start a public conversation to compare the parity of each of their three bytes. Because there is a mismatch,
caused by the seventh bit (indicated in red) in the third byte, they try to locate the problem. They must eliminate all errors, or
else their keys are unusable. Because the conversation takes place over an open communication line, Eve initially gains infor-
mation about the parity of the sifted key. That information, however, can be eliminated if Alice and Bob drop some bits from their
sequence. Relying on her old information, Eve will not understand anything about the new bit sequence.
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open air. The protocol uses polariza-
tion states, as previously described,
because the atmosphere preserves
polarization over a wide range of pho-
ton wavelengths (including the full
range of visible and infrared light).
The major difficulty is detecting the

single QKD photons from within 
the enormous background of daytime
photons, namely, ≥ 1010 background
photons per centimeter squared, per
second, per angstrom, per steradian
(γ /cm2/s/Å/sr). This problem exists
even at night because the background

from, say, moonlight or the light of
urban areas is still much larger than
the QKD signal. A second difficulty is
dealing with losses due to atmospheric
distortions. We are able to overcome
both of these problems and can distin-
guish the QKD photons from back-
ground photons by using interference
filters that transmit only photons of a
specific wavelength, by carefully 
limiting the field of view, and by using
a clever trick. The free-space QKD
system is shown in Figure 4.

Alice and Bob have identical
copies of the interference filters,
which allow Alice to send photons
at a selected wavelength and Bob to
receive photons only at that wave-
length. The preferred wavelength is
about 772 nanometers, which is in
the infrared and just outside the nor-
mal range of vision. The atmosphere
is highly transmitting for light of
this color, and single-photon detec-
tors with good quantum efficiency at
this wavelength are readily avail-
able. Furthermore, polarization
selection and control components
and diode lasers that produce the
desired wavelength are all easily
obtained. 

A receiver telescope with a 
narrow field of view helps limit
unwanted photons. Behind the tele-
scope is a spatial filter that passes
photons coming from a precise loca-
tion (Alice’s) while excluding all the
others. The telescope must be
employed with care, however. As
anyone who has ever looked at the
twinkling stars knows, the atmos-
phere can make a source of light
appear to move. The magnitude of
the movement varies considerably
with the time of day, the weather,
and the local terrain. If not
accounted for, the atmosphere could
cause Alice to shift rapidly in and
out of Bob’s field of view. Over
short distances, these atmospheric
distortions are not a serious prob-
lem. Over long distances, Alice 

The No-Cloning Theorem

In 1982, Bill Wootters and Wojciech Zurek applied the linear properties of
quantum mechanics to prove that an arbitrary quantum state cannot be
cloned. Although their argument is entirely general, we will illustrate the the-
orem with polarized photons. Suppose we have a perfect cloning device in
the initial state |A0〉 and an incoming photon in an arbitrary polarization state
|s〉. The device duplicates the photon as follows:

|A0〉|s〉 → |As〉|ss〉 , (1)

where |As〉 is the device final state, which may or may not depend on the
polarization of the original photon, and |ss〉 refers to the state of the electro-
magnetic field in which there are two photons, each with polarization |s〉.
Suppose that the device can duplicate both the vertical |V〉 and the horizontal
|H〉 polarization, that is,

|A0〉|V〉 → |AV〉|VV〉 , and (2)

|A0〉|H〉 → |AH〉|HH〉 . (3)

According to quantum mechanics, this transformation should be representable
by a linear operator, which means the operator acts independently on each
orthogonal state in the Hilbert space. Therefore, if the incoming photon has
some arbitrary polarization given by the linear superposition |s〉 = α|V〉 +
β|H〉, the result of its interaction with the apparatus will be a superposition of
Equations (2) and (3):

|A0〉|s〉 = |A0〉 (α|V〉 + β|H〉) 

= α|AV〉|VV〉 + β|AH〉|HH〉 . (4)

If the apparatus states |AV〉 and |AH〉 are not identical, the two photons emerg-
ing from the apparatus are in a mixed state of polarization; if they are identi-
cal, the emerging two photons are in a pure entangled state, α|VV〉 + β|HH〉.
In neither case does the apparatus produce a final state |ss〉 consisting of two
completely independent photons, each in the polarization state α|V〉 + β|H〉:

|ss〉 = (α|V〉 + β|H〉) (α|V〉 + β|H〉) 

= α2|VV〉 + αβ|VH〉 + βα|HV〉 + β2|HH〉 . (5)

Linearity, therefore, rules out the existence of a device that could faithfully
clone a photon in an arbitrary polarization state. 
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Figure 4. Free-Space QKD
(a) In the BB84 protocol, Alice (the
sender) encodes bits in the polarization
states of single photons either as 0 = |H〉
and 1 = |V〉 or as 0 = |–45〉 and 1 = |+45〉.
The data stream begins with a bright
output pulse from the timing laser,
which sets the timing of the pulse. A few
nanoseconds later, one of the four data
lasers (λ = 772 nm) fires. Each data
laser has its own attenuator, focusing
optics, and polarizer. Each laser outputs
a uniform pulse of the desired bright-
ness in one of the four polarization
states. The output of all four data lasers
is combined by a series of beam split-
ters, which have been carefully arranged
so that the distances between the lasers
and output optics are the same (there-
fore eliminating any timing differences
between the pulses). The final beam 

splitter either directs the photons to a
detector that monitors the average num-
ber of photons per laser pulse or sends
the polarized photons through a narrow-
pass interference filter (to remove any
frequency differences) and a single
mode fiber (to eliminate any spatial
mode differences). The photons that
pass through Alice’s telescope are iden-
tical in every respect except for polariza-
tion. Bob (the receiver) uses spatial
filtering, time-domain filtering, and
wavelength selection to pick out Alice’s
photons from background. His tele-
scope, with a field of view that is nomi-
nally 45 arc seconds (or 220 microradians),
acts as a spatial filter that allows only
photons from Alice’s location to pass.
The photons then pass through an inter-
ference filter (wavelength selection) 

that is matched to the one in Alice’s
transmitter. Photons are sent to a 50-50
beam splitter, which acts as a basis
selector by randomly directing a photon
to one of the two measurement stations.
Each station consists of a polarizing
beam splitter and two single-photon
detectors. A half-wave plate (HWP)
rotates the photon’s polarization before
the –45°/+45° station. A detector must
fire within a set period following detec-
tion of the bright timing pulse (time-
domain filtering). (b) Alice’s compact
optics table and (c) electronics are
shown here. (d) Bob’s telescope peers
out from the door of the mobile trailer
containing all his electronics and optical
systems. Bob (and Alice) can be easily
transported to different sites. Moreover,
one person can operate the system.

0

0

0 0

1

1

1

1

Alice Bob

Attenuated
data laser

Polarizer

50-50 Beam splitter

Polarizing
beam splitter

Interference
filter

Spatial
filter

Dichroic
mirror Telescopes

Dichroic
mirror

Single-
mode
filter

Single-
photon
detector Timing

laser

Timing
detector

H/V basis

H/V basis

–45°/+45° basis

–45°/+45° basis

Filter

HWP

(a) Conceptual Diagram

(b) Alice’s Optics Table (c) Alice’s Electronics (d) Bob’s System



corrects for atmospheric variations
by observing Bob’s beacon laser and
is thus able to rapidly vary the point 
to which she sends the photons. 

Finally, the clever trick is to send
a bright laser pulse from Alice to
Bob just before a single photon is
sent so there is a known delay
between the photon and the bright
pulse. Bob accepts only photons 
that enter the system approximately
1 nanosecond after the bright pulse.
This time-domain filtering greatly
limits the possibility of a back-
ground photon being detected
instead of a QKD photon. This sys-
tem of multiple filtering techniques
works so well that single QKD pho-
tons can be distinguished from back-
ground even in daylight. 

One issue complicating the free-
space system (as well as the other
systems described below) is that the
photon sources are actually attenu-
ated laser diodes that produce weak
laser pulses instead of true single
photons. (Single-photon sources are
currently too large and exotic for
systems intended for use in the
field.) The number of photons in a
weak laser pulse is governed by
Poisson statistics, and the number 
of photons in each pulse varies. 
The probability P(n) that a pulse
will contain n photons is,

(4)

where µ is the average number of
photons per pulse. If µ = 1, there is
roughly a 37 percent chance that a
pulse will contain no photons,
37 percent that it will contain one
photon, and 26 percent that the
pulse will contain more than one
photon. 

By adjusting the attenuation,
Alice can choose a specific value of
µ. If she chooses a relatively high µ,
say, above 1 photon per pulse, each
time more than one photon is sent, it
must be assumed that a clever eaves-

dropper would be able to detect and
measure the extra photons. A great
deal of privacy amplification—con-
comitant with a large consumption
of reconciled bits—is needed to
keep the system secure, so overall,
the secret bit yield decreases. If µ is
too small, say, 0.05, then most of
the time Alice is sending nothing
over the quantum channel and
experimental errors (such as back-
ground light getting into the
receiver, dark counts in detectors, or
even the actions of an eavesdropper)
may dominate. Again, the secret-bit
yield decreases. The choice of µ is
therefore an important free parame-
ter at Alice’s disposal. 

Our experiments have shown that
the secret-bit yield depends strongly
on atmospheric conditions.
Turbulence along the optical path
between Alice and Bob, for exam-
ple, affects the transmission effi-
ciency. To help show trends in the
data, we construct a pseudo signal-
to-noise ratio, η/C, where η is the
transmission efficiency (obtained by
dividing the number of sifted bits by
µ) and C is the number of back-
ground photons detected by Bob. 

Figure 5 shows data from a free-
space QKD experiment that ran 
successfully at a 10-kilometer sepa-
ration in daylight. The open commu-
nication channel was a wireless
Ethernet. During the numerous
experimental runs, Alice would send
106 laser pulses over a 1-second
period. The value of µ was typically
set between 0.1 and 0.8. 

The experimental run labeled
“Sample” in Figure 5 is a typical
example. Approximately 22 percent
of the pulses had a single photon 
(µ = 0.29). After comparing Alice
and Bob’s bases, we constructed a
sifted key of 651 bits. Following
error correction, calculation of the
BER, and privacy amplification, we
obtained a secret key consisting of
264 bits, which is sufficient for the

new AES. Note that the secret-bit
yield can be substantially higher at
night (high η/C), because the back-
ground is reduced. 

Our free-space system is a pre-
liminary prototype for a system that
could be flown on a spacecraft.
Because the atmosphere has an
effective thickness of only a few
kilometers if one were to look
straight up, our results are a good
indicator of the feasibility of
ground-to-satellite free-space QKD. 

Fiber-Based QKD. The polariza-
tion state of a photon is not pre-
served in conventional optical fibers.
That is why another physical prop-
erty that could express the desired
quantum mechanical properties for
QKD had to be found in order to
implement a fiber-based system. 
The solution was to have a photon
interfere with itself after it travels
down two paths of a twin Mach-
Zehnder interferometer setup. 

The concepts underlying the
fiber-based QKD scheme are illus-
trated in Figure 6. Briefly, quantum
mechanics tells us that a single 
photon entering a Mach-Zehnder
interferometer behaves as if it has
taken both paths through the instru-
ment. The entrance beam splitter
places the photon in a quantum
mechanical superposition, with a
component that describes a photon
traversing the upper path and a 
component that describes the photon
traversing the lower path. The two 
components have a definite phase
relationship and can interfere with
each other. 

As seen in the figure, Alice 
can introduce a phase shift φA to 
the photon on one arm of the 
interferometer, while Bob can intro-
duce a phase shift φB on the other.
Depending on the phases set by 
both Alice and Bob, the interference
at the exit beam splitter is such that
the photon has a definite probability

P n
e

n

n

( ) =
−µµ

!
 ,
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to hit either of two detectors. The
probability PU that the photon hits
the upper detector is given by 

(5)

whereas the probability PL that 
the photon hits the lower detector 

is given by 

(6)

We make use of these relations to
implement the BB84 protocol. Alice
chooses at random between two bases,
X and Y. If she chooses the X-basis, then

for a bit value of 0 or 1, she sets φA = 0°
or 180°, respectively.  If Alice chooses
the Y-basis, then she chooses φA = 90°
or 270° for bit values of 0 or 1, respec-
tively. At his end, Bob sets his phase
angle φB to 0° if he is in the X-basis and
to 90° if he is in the Y-basis.

Table II summarizes Alice and
Bob’s choices and shows the value of
the probabilities PU and PL, given the

PL  
–  

 =






cos2 A Bφ φ

2

PU  
–  

 ,=






sin2 A Bφ φ
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Figure 5. Data from a 10-km Free-
Space QKD Experiment
(a) Alice was located halfway up
Pajarito Mountain, in New Mexico, while
Bob was 10 km away, at a Los Alamos
lab site. (b) The bright red dot near the
center of the picture is a spotting laser
sent through Alice’s telescope. It was
used to optically align the transmitter
and receiver for the quantum channel.
(c) Data from the experiment show the
dependence of the secret-bit yield (nor-
malized to the number of sifted bits) on
the average number of photons per
pulse µ and on the pseudo signal-to-
noise ratio η/C (discussed in the text).
Each vertical column corresponds to an
experimental run in which Alice sent 106

polarized photons in 1 s.The flat, black
regions of the graph are areas for which
no data are available. With favorable
atmospheric conditions or low back-
ground (high η/C), we can run at lower µ
values and still obtain a high bit yield.
Poorer conditions (low η/C) require higher
µ values and result in a lesser yield.
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various combinations of φA and φB.
Because we are implementing BB84,
Table II is essentially the same as
Table I. When Alice and Bob choose
the same basis, a photon representing
Alice’s 1 always goes to the upper
detector, and a photon representing
her 0 always goes to the lower. If
Alice and Bob use different bases,
the photon has equal probability to
emerge from either port, and Bob has
no information about what bit value
Alice has sent. At the end of the 
session, Bob calls Alice on the open

communications line, and the two
compare which bases they used for
each photon. They keep the bit values
when the bases agree and discard 
the other bits. 

In the scheme discussed above, a
single Mach-Zehnder interferometer
stretches between Alice and Bob. In
practice, that is a bad idea. The pho-
ton needs to maintain phase coherence
as it propagates down the two optical
fibers that make up the long arms of
the interferometer. Photons often
experience random phase shifts as

they go through long fiber-optic
cables, and because the shifts in one
arm are independent of those in the
other, the interference condition at 
the exit beam splitter changes in a
random fashion. Furthermore, having
two dedicated fibers would be expen-
sive to operate in the real world. 

A better idea is for Alice and Bob
each to have a Mach-Zehnder interfer-
ometer, with the two connected by a
single long fiber—see Figure 7. 

Each interferometer is modified 
to have a long arm and a short arm, and
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In a Mach-Zehnder interferometer, a photon is placed in a
superposition of two states by the entrance beam splitter. It
travels down both arms simultaneously, and interferes with
itself at the exit beam splitter. In the conceptual fiber-based
QKD system illustrated here, a phase shifter is placed in
each arm of the interferometer. Alice randomly chooses a bit
value and a basis and sets the angle of her phase shifter
according to her choices (see Table II below). Bob sets the

angle of his phase shifter according to his basis choice.
The table shows the probability that Bob detects a photon 
in a given detector. When Alice and Bob use the same basis
for sending and measuring, a hit in Bob’s lower detector
means that Alice sent a bit value of 0, whereas a hit on the
upper detector means she sent a 1. Because there is no
such correlation when Alice and Bob use different bases,
those bit values are discarded.

Phase
shifter

Entrance beam splitter

Exit beam splitter

Mirror

U

L

Single-
photon
source

A

Phase
shifter

Long fiber-optic line

Alice Bob

Long fiber-optic line

   B

PL = cos2 
   A –   B

2


 


 

PU = sin2  
   A –   B
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φ

φ
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φ φ

φ

Table II. Fiber-Based QKD

Sender (Alice) Receiver (Bob) Action

Probability (%)

Basis Bit
Phase  A
      (°)

Phase  B
      (°)Basis PL PU Bit

  X 0 0 X 0 100 0 0 Keep bit

  X 1 180 X 0 0 100 1 Keep bit

  X 0 0 Y 90 50 50 0 or 1 Discard bit

  X 1 180 Y 90 50 50 0 or 1 Discard bit

  Y 0  90 X 0 50 50 0 or 1 Discard bit

  Y 1 270 X 0 50 50 0 or 1 Discard bit

  Y 0  90 Y 90 100 0 0 Keep bit

  Y 1 270 Y 90 0 100 1 Keep bit

Figure 6. Mach-Zehnder Interferometer and Fiber-Based QKD Concept



the path length differences between the
two arms are greater than the coherence
length of the photon. There is no inter-
ference as the photon leaves Alice’s
instrument. But of the four possible
paths through the entire system (refer to
the figure), the two designated as S1L2
and L1S2 are of equal length (to within
the phase coherence length of the pho-
ton). A photon that travels down those
two paths interferes with itself at Bob’s
exit beam splitter. The system therefore
behaves as if it were a single instru-
ment. Alice and Bob are still free to
vary the phase on one arm of their
interferometers, as needed, to carry out
the protocol.

Our system transmits bits through
48 kilometers of fiber. As in the 
free-space experiments, Alice first
sends a bright pulse to trigger the
detectors and to limit background inter-
ference. Single photons are sent at
1310 nanometers, and the bright timing
pulse is at 1550 nanometers. The
secret-bit yield is lower than that
obtained in the free-space experiment. 

Summary

Quantum cryptography can enable
secure transmission of sensitive, pro-
prietary, or national security informa-
tion across a metropolitan area or

corporate campus and provide the
long-term security guarantees such
data require. It is the only technology
that will be secure no matter what
technology an adversary develops in
the future. Furthermore, it raises the
stakes for eavesdroppers because they
must perform risky, active attacks
against a system. Currently, a public-
key encrypted system can be attacked
through passive, standoff monitoring. 

Because of the inherent advantages
of quantum cryptography, we can
envision a future in which a QKD sys-
tem provides secure communications
in metropolitan areas between banks,
between off-site stock-trading centers
and central stock exchanges, between
corporate offices, and between offices
and broadband data networks. Money
transfers between banks now amount
to over $2 trillion per day worldwide
and well justify the expense of imple-
menting QKD systems. Optical wire-
less “last-mile” communications
systems could even provide broad-
band access to most homes. 

By combining theoretical analyses
with innovative experimental
advances, the Los Alamos quantum
cryptography team has already
demonstrated the practicality of free-
space quantum cryptography in a
series of record-setting experiments.
In 1996, the team demonstrated

atmospheric quantum-key transmis-
sion at night, quickly followed by a
record-setting 0.5-kilometer point-to-
point transmission in full daylight,
then a 1.6-, and finally a 10-kilometer
transmission. The world record for the
longest QKD distribution in fiber—
48 kilometers—was also held by the
Los Alamos team for many years.
Several of the first demonstrations of
entanglement-based QKD have also
been performed at the Laboratory. 

In the near future, the free-space
quantum cryptography system could
provide secure satellite communica-
tions—using a low-orbit satellite—
between cities anywhere in the world.
When deployed on a spacecraft, our
system can be used to generate crypto-
graphic keys between any two users
who are anywhere on the planet and
can view that spacecraft. Each user
would individually generate a key with
the spacecraft. The second user would
then be instructed to change specific
bits so that the two users’ keys would
match. Because the spacecraft only
needs to instruct the user which bits to
change, and can do so without reveal-
ing any bit values, this is a secure key-
generation methodology. 

On a more philosophical note, the
challenging demands of cryptography
have already produced a huge growth
in research into the foundations of
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Figure 7. Implementation of Fiber-Based QKD 
Our fiber-based QKD system uses two modified interferometers connected by a single, long optical fiber. Each interferometer
has a long (L) arm and a short (S) arm. In going from Alice’s entrance beam splitter to Bob’s exit beam splitter, the photon can
take paths S1S2, L1L2, S1L2, and L1S2. The latter two paths have the same length, and the photon traveling them can maintain
phase coherence and interfere with itself. The protocol then works as described in Figure 6.
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quantum mechanics. Fundamental
concepts that were previously thought
to be testable only in thought experi-
ments have been subjected to 
experimental verification. Many con-
cepts, such as entanglement, that have
been almost completely neglected
since the early days of quantum
physics have been explored and 
realized. This trend will continue, and
we will find out to what extent the
creation and control of “mesoscopic”
quantum systems, that is, the nether-
world between single-particle behav-
ior and collective-particle behavior,
can be performed. This research may
help elucidate the puzzling transition
between the quantum and classical
regime. The development of quantum
technology will open up other 
applications of quantum physics, such
as quantum-enhanced sensors and
improvements to atomic clocks and
satellite navigation systems. Whether
or not quantum cryptography becomes
a widely adopted technology, we are
in for an interesting next decade. �

Acknowledgments

The Quantum Cryptography 
team combines the talents of 
numerous scientists and engineers,
including those of Kevin P. McCabe,
George L. Morgan, Michael J. Pigue,
Steven A. Storms, Paul A. Montano,
James T. Thrasher, and especially
Charles G. Peterson. The authors wish
to thank Derek Derkacs for technical
support. We gratefully acknowledge
support for the 10-kilometer free-
space experiment from the National
Reconnaissance Office Director’s
Innovation Initiative program,
administered by Col. John Comtois
and Peter Hendrickson.

Further Reading

Bennett, C. H. 1992. Quantum Cryptography:
Uncertainty in the Service of Privacy.
Science 257 (5071): 752.

Bennett, C. H., and G. Brassard. 1984.
Quantum Cryptography: Public-Key
Distribution and Coin Tossing. In
Proceedings of the IEEE International
Conference on Computers, Systems, and
Signal Processing, Bangalore, India, 1984.
p. 175. New York: IEEE.

Bennett, C. H., G. Brassard, C. Crépeau, and 
U. M. Maurer. 1995. Generalized Privacy
Amplification. IEEE Trans. Inf. Theory
41 (6): 1915.

Bennett, C. H., G. Brassard, and A. K. Ekert.
1992. Quantum Cryptography. Sci. Am. 
267 (4): 50. 

Hughes, R. J., D. G.L. Morgan, and 
C. G. Peterson. 2000. Quantum Key
Distribution over a 48-km Optical Fiber
Network. J. Mod. Opt. 47: 533. 

Hughes, R. J., J. E. Nordholt, D. Derkacs, and
C. G. Peterson. 2002. Practical Free-Space
Quantum Key distribution over 10 km in
Daylight and at Night. New J. Phys. 4: 43.
[Online]: http//www.njp.org

Hughes, R. J., W. T. Buttler, P. G. Kwiat,
S. K. Lamoreaux, G. L. Morgan,
J. E. Nordholt, and C. G. Peterson. 2000.
Free-Space Quantum Key Distribution in
Daylight. J. Mod. Opt. 47: 549.

Hughes, R. J., W. T. Buttler, P. G. Kwait,
S. K. Lamoreaux, G. L. Morgan,
J. E. Nordholt, and C. G. Peterson. 2000.
Quantum Cryptography for Secure Satellite
Communications. In 2000 IEEE Aerospace
Conference Proceedings. p. 191. 
New York: IEEE. 

Hughes, R., and J. Nordholt. 1999. Quantum
Cryptography Takes to the Air. Phys. World
12 (5): 31.

Hughes, R. J., W. T. Buttler, P. G. Kwiat,
S. K. Lamoreaux, G. G. Luther, G. L.
Morgan, J. E. Nordholt, and C. G. Peterson.
1999. Quantum Cryptography for Secure
Free-Space Communications. Proc.
SPIE–Int. Soc. Opt. Eng. 3615: 98.

Nordholt, J. E., R. J. Hughes, G. L. Morgan,
C. G. Peterson, and C. C. Wipf. 2002.
Present and Future Free-Space Quantum
Key Distribution. Proc. SPIE–Int. Soc. Opt.
Eng. 4635:116.

Schneier, B. 1995. Applied Cryptography:
Protocols, Algorithms Source Code in C.
New York: John Wiley & Sons.

Singh, S. 1999. The Code Book: The Evolution
of Secrecy from Mary, Queen of Scots to
Quantum Cryptography. New York:
Doubleday. 

Wootters, W. K., and W. H. Zurek. 1982. 
A Single Quantum Cannot be Cloned.
Nature 299: 802.

Number 27  2002  Los Alamos Science  85

A New Face for Cryptography

Jane E. (Beth) Nordholt has broad experience
in quantum-key distribution, experimental astro-
physics, high-energy physics, computing, and
space plasma physics. Currently a technical

project leader at 
Los Alamos National
Laboratory, she is 
the coinventor for the
free-space quantum
key distribution proj-
ect and holds several
patents on quantum-
key distribution and
spacecraft instrumen-
tation. Beth received

four NASA group achievement awards and two
Los Alamos Distinguished Performance Awards.
In 2001, she received an R&D 100 Award 
for her work on free-space quantum cryptogra-
phy from the Research and Development
magazine. Her interests include quantum 
cryptography, quantum communications,
quantum metrology, the composition of 
planetary magnetospheres, planetary science,
and advanced instrumentation.

Richard J. Hughes is a Laboratory Fellow and
Quantum Information Science team leader in
the Neutron Science and Technology Group of
the Physics Division at Los Alamos National
Laboratory. He is the
principal investigator
for several projects in
quantum computation
and quantum cryptog-
raphy. Richard obtained
his Ph.D. in theoretical
elementary particle
physics from the
University of Liverpool
and held research 
positions at Oxford
University and The Queen’s College, Oxford;
California Institute of Technology; and CERN,
the European Center for Nuclear Research. He
was a distinguished visiting scientist at Oxford
University and the University of Oslo. Richard
was awarded the Los Alamos Fellows Prize for
his work on quantum information science; he
was twice awarded Los Alamos Distinguished
Performance Awards for his quantum cryptogra-
phy research; and he was cowinner of an R&D
100 Award for the entry “Free-Space Quantum
Cryptography.” He became a Fellow of the
American Physical Society in 1999. He has
authored over 100 scientific papers on quantum
field theory, the foundations of quantum 
mechanics, quantum cryptography, and quantum
computation. In his spare time, Richard enjoys
ultramarathon trail running over distances of 
up to 100 miles.


	Concepts in Quantum Information Science
	Quantum Information Processing
	Glossary
	From Factoring to Phase Estimation

	20 Questions, Quantum Computers, and Cryptography
	Quantum State Entanglement
	A New Face for Cryptography




